Skip to main content
EXCLI Journal logoLink to EXCLI Journal
letter
. 2020 Feb 28;19:227–229. doi: 10.17179/excli2020-1136

PPARG as therapeutic target for antifibrotic therapy

Ahmed Ghallab 1,*, Abdellatief Seddek 1
PMCID: PMC7105936  PMID: 32256268

Dear Editor,

Prevalence and mortality of liver fibrosis continue to grow (Pimpin et al., 2018[17]; Weiskirchen and Tacke, 2016[24]; Leist et al., 2017[13]; Godoy et al., 2013[6]). Liver fibrosis occurs as a consequence of chronic liver damage due to various causes, such as viral infections, super-nutrition, metabolic disorders or genetic diseases (Godoy et al., 2013[6]; Ghallab et al., 2019[5]).

Recently, Winkler and colleagues performed a comprehensive study to analyze the role of miRNA in liver fibrosis and the development of hepatocellular cancer (Winkler et al., 2020[25]). For this purpose, the authors generated mice that express a constitutively active variant of serum response factor (SRF) in the liver (Winkler et al., 2020[25]). SRF regulates numerous biological processes (Olson and Nordheim 2010[16]; Ohrnberger et al., 2015[15]) and the mice develop hyperproliferative nodules that progress to HCC (Ohrnberger et al., 2015[15]). In this murine HCC model, the authors identified eight miRNA hubs and 54 target genes that regulate components of the fibrotic extracellular matrix (Winkler et al., 2020[25]). Hubs are defined as nodes in a transcriptional regulatory network with an unusual high number of connections (Anastasiadou et al., 2018[2]). Here, the miRNA families let-7, miR-30 as well as miR-29c, miR-335 and miR-338 represent central antifibrotic miRNAs (Winkler et al., 2020[25]). Importantly, these antifibrotic miRNAs (with the exception of miR-335) are regulated by the transcription factor PPARG (Winkler et al., 2020[25]). Therefore, the authors conclude that stimulating this transcription factor may represent a strategy for antifibrotic therapy.

Currently, numerous research activities are performed to identify or optimize therapies for chronic liver disease (Trauner et al., 2017[22]; Svinka et al., 2017[20]; Ghallab et al., 2016[3]; Schliess et al., 2014[18]). A particular challenge are the different etiologies with toxic (Grinberg et al., 2014[8]; 2018[7]; Albrecht et al., 2019[1]; Sezgin et al., 2018[19]), viral (Kazankov et al., 2014[12]; Theise et al., 2018[21]; Maponga et al., 2018[14]), cholestatic (Vartak et al., 2016[23]; Ghallab et al., 2019[4]; Hessel-Pras et al., 2020[9]) and genetic (Hudert et al., 2019[10]; Jansen et al., 2017[11]) mechanisms. A strength of the present study of Winkler et al.[25] is that the authors have identified hubs to target numerous antifibrotic genes simultaneously, independent of the etiology. Future studies will show, whether hub-targeting therapies will indeed ameliorate fibrosis and delay progression to HCC in mouse tumor models.

Conflict of interest

The authors declare no conflict of interest.

References

  • 1.Albrecht W, Kappenberg F, Brecklinghaus T, Stoeber R, Marchan R, Zhang M, et al. Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol. 2019;93:1609–1637. doi: 10.1007/s00204-019-02492-9. doi: 10.1007/s00204-019-02492-9. Available from: [DOI] [PubMed] [Google Scholar]
  • 2.Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. doi: 10.1038/nrc.2017.99. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ghallab A, Cellière G, Henkel SG, Driesch D, Hoehme S, Hofmann U, et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol. 2016;64:860–871. doi: 10.1016/j.jhep.2015.11.018. doi: 10.1016/j.jhep.2015.11.018. Available from: [DOI] [PubMed] [Google Scholar]
  • 4.Ghallab A, Hofmann U, Sezgin S, Vartak N, Hassan R, Zaza A, et al. Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology. 2019;69:666–683. doi: 10.1002/hep.30213. doi: 10.1002/hep.30213. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ghallab A, Myllys M, Holland CH, Zaza A, Murad W, Hassan R, et al. Influence of liver fibrosis on lobular zonation. Cells. 2019;8:E1556. doi: 10.3390/cells8121556. doi: 10.3390/cells8121556. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87:1315–1530. doi: 10.1007/s00204-013-1078-5. doi: 10.1007/s00204-013-1078-5. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Grinberg M, Stöber RM, Albrecht W, Edlund K, Schug M, Godoy P, et al. Toxicogenomics directory of rat hepatotoxicants in vivo and in cultivated hepatocytes. Arch Toxicol. 2018;92:3517–3533. doi: 10.1007/s00204-018-2352-3. doi: 10.1007/s00204-018-2352-3. Available from: [DOI] [PubMed] [Google Scholar]
  • 8.Grinberg M, Stöber RM, Edlund K, Rempel E, Godoy P, Reif R, et al. Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol. 2014;88:2261–2287. doi: 10.1007/s00204-014-1400-x. doi: 10.1007/s00204-014-1400-x. Available from: [DOI] [PubMed] [Google Scholar]
  • 9.Hessel-Pras S, Braeuning A, Guenther G, Adawy A, Enge AM, Ebmeyer J, et al. The pyrrolizidine alkaloid senecionine induces CYP-dependent destruction of sinusoidal endothelial cells and cholestasis in mice. Arch Toxicol. 2020;94:219–229. doi: 10.1007/s00204-019-02582-8. doi: 10.1007/s00204-019-02582-8. Available from: [DOI] [PubMed] [Google Scholar]
  • 10.Hudert CA, Selinski S, Rudolph B, Bläker H, Loddenkemper C, Thielhorn R, et al. Genetic determinants of steatosis and fibrosis progression in paediatric non-alcoholic fatty liver disease. Liver Int. 2019;39:540–556. doi: 10.1111/liv.14006. doi: 10.1111/liv.14006. Available from: [DOI] [PubMed] [Google Scholar]
  • 11.Jansen PL, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, et al. The ascending pathophysiology of cholestatic liver disease. Hepatology. 2017;65:722–738. doi: 10.1002/hep.28965. doi: 10.1002/hep.28965. Available from: [DOI] [PubMed] [Google Scholar]
  • 12.Kazankov K, Barrera F, Møller HJ, Bibby BM, Vilstrup H, George J, et al. Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C. Hepatology. 2014;60:521–530. doi: 10.1002/hep.27129. doi: 10.1002/hep.27129. Available from: [DOI] [PubMed] [Google Scholar]
  • 13.Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, et al. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol. 2017;91:3477–3505. doi: 10.1007/s00204-017-2045-3. doi: 10.1007/s00204-017-2045-3. Available from: [DOI] [PubMed] [Google Scholar]
  • 14.Maponga TG, Andersson MI, van Rensburg CJ, Arends JE, Taljaard J, Preiser W, et al. HBV and HIV viral load but not microbial translocation or immune activation are associated with liver fibrosis among patients in South Africa. BMC Infect Dis. 2018;18:214. doi: 10.1186/s12879-018-3115-8. doi: 10.1186/s12879-018-3115-8. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ohrnberger S, Thavamani A, Braeuning A, Lipka DB, Kirilov M, Geffers R, et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology. 2015;61:979–989. doi: 10.1002/hep.27539. doi: 10.1002/hep.27539. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol. 2010;11:353–365. doi: 10.1038/nrm2890. doi: 10.1038/nrm2890. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L, et al. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018;69:718–735. doi: 10.1016/j.jhep.2018.05.011. doi: 10.1016/j.jhep.2018.05.011. Available from: [DOI] [PubMed] [Google Scholar]
  • 18.Schliess F, Hoehme S, Henkel SG, Ghallab A, Driesch D, Böttger J, et al. Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology. 2014;60:2040–2051. doi: 10.1002/hep.27136. doi: 10.1002/hep.27136. Available from: [DOI] [PubMed] [Google Scholar]
  • 19.Sezgin S, Hassan R, Zühlke S, Kuepfer L, Hengstler JG, Spiteller M, et al. Spatio-temporal visualization of the distribution of acetaminophen as well as its metabolites and adducts in mouse livers by MALDI MSI. Arch Toxicol. 2018;92:2963–2977. doi: 10.1007/s00204-018-2271-3. doi: 10.1007/s00204-018-2271-3. Available from: [DOI] [PubMed] [Google Scholar]
  • 20.Svinka J, Pflügler S, Mair M, Marschall HU, Hengstler JG, Stiedl P, et al. Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. J Mol Med (Berl) 2017;95:109–117. doi: 10.1007/s00109-016-1462-8. doi: 10.1007/s00109-016-1462-8. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Theise ND, Jia J, Sun Y, Wee A, You H. Progression and regression of fibrosis in viral hepatitis in the treatment era: the Beijing classification. Mod Pathol. 2018;31:1191–1200. doi: 10.1038/s41379-018-0048-0. doi: 10.1038/s41379-018-0048-0. Available from: [DOI] [PubMed] [Google Scholar]
  • 22.Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology. 2017;65:1393–1404. doi: 10.1002/hep.28991. doi: 10.1002/hep.28991. Available from: [DOI] [PubMed] [Google Scholar]
  • 23.Vartak N, Damle-Vartak A, Richter B, Dirsch O, Dahmen U, Hammad S, et al. Cholestasis-induced adaptive remodeling of interlobular bile ducts. Hepatology. 2016;63:951–964. doi: 10.1002/hep.28373. doi: 10.1002/hep.28373. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Weiskirchen R, Tacke F. Liver fibrosis: Which mechanisms matter? Clin Liver Dis (Hoboken) 2016;8:94–99. doi: 10.1002/cld.581. doi: 10.1002/cld.581. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Winkler I, Bitter C, Winkler S, Weichenhan D, Thavamani A, Hengstler JG, et al. Identification of Pparγ-modulated miRNA hubs that target the fibrotic tumor microenvironment. Proc Natl Acad Sci U S A. 2020;117:454–463. doi: 10.1073/pnas.1909145117. doi: 10.1073/pnas.1909145117. Available from: [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from EXCLI Journal are provided here courtesy of Leibniz Research Centre for Working Environment and Human Factors

RESOURCES