Skip to main content
Oxford University Press - PMC COVID-19 Collection logoLink to Oxford University Press - PMC COVID-19 Collection
. 2016 Oct 26:msw231. doi: 10.1093/molbev/msw231

The genomes of two bat species with long constant frequency echolocation calls

Dong Dong 1,^,*, Ming Lei 1,^, Panyu Hua 1, Yi-Hsuan Pan 1, Shuo Mu 1, Guantao Zheng 1, Erli Pang 2, Kui Lin 2, Shuyi Zhang 3
PMCID: PMC7107545  PMID: 27803123

Abstract

Bats can perceive the world by using a wide range of sensory systems, and some of the systems have become highly specialized, such as auditory sensory perception. Among bat species, the Old World leaf-nosed bats and horseshoe bats (rhinolophoid bats) possess the most sophisticated echolocation systems. Here, we reported the whole-genome sequencing and de novo assembles of two rhinolophoid bats – the great leaf-nosed bat (Hipposideros armiger) and the Chinese rufous horseshoe bat (Rhinolophus sinicus). Comparative genomic analyses revealed the adaptation of auditory sensory perception in the rhinolophoid bat lineages, probably resulting from the extreme selectivity used in the auditory processing by these bats. Pseudogenization of some vision-related genes in rhinolophoid bats was observed, suggesting that these genes have undergone relaxed natural selection. An extensive contraction of olfactory receptor gene repertoires was observed in the lineage leading to the common ancestor of bats. Further extensive gene contractions can be observed in the branch leading to the rhinolophoid bats. Such concordance suggested that molecular changes at one sensory gene might have direct consequences for genes controlling for other sensory modalities. To characterize the population genetic structure and patterns of evolution, we re-sequenced the genome of 20 great leaf-nosed bats from four different geographical locations of China. The result showed similar sequence diversity values and little differentiation among populations. Moreover, evidence of genetic adaptations to high altitudes in the great leaf-nosed bats was observed. Taken together, our work provided a useful resource for future research on the evolution of bats.


Articles from Molecular Biology and Evolution are provided here courtesy of Oxford University Press

RESOURCES