Abstract
Abstract Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexually transmitted diseases, and are associated with cardiovascular diseases. The analysis of codon usage may improve our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of target genes to improve their expression for gene therapy. Here, we analyzed the codon usage of C. muridarum, C. trachomatis (here indicating biovar trachoma and LGV), C. pneumoniae, and C. psittaci using the codon usage database and the CUSP (Create a codon usage table) program of EMBOSS (The European Molecular Biology Open Software Suite). The results show that the four genomes have similar codon usage patterns, with a strong bias towards the codons with A and T at the third codon position. Compared with Homo sapiens, the four chlamydial species show discordant seven or eight preferred codons. The ENC (effective number of codons used in a gene)‐plot reveals that the genetic heterogeneity in Chlamydia is constrained by the G+C content, while translational selection and gene length exert relatively weaker influences. Moreover, mutational pressure appears to be the major determinant of the codon usage variation among the chlamydial genes. In addition, we compared the codon preferences of C. trachomatis with those of E. coli, yeast, adenovirus and Homo sapiens. There are 23 codons showing distinct usage differences between C. trachomatis and E. coli, 24 between C. trachomatis and adenovirus, 21 between C. trachomatis and Homo sapiens, but only six codons between C. trachomatis and yeast. Therefore, the yeast system may be more suitable for the expression of chlamydial genes. Finally, we compared the codon preferences of C. trachomatis with those of six eukaryotes, eight prokaryotes and 23 viruses. There is a strong positive correlation between the differences in coding GC content and the variations in codon bias (r=0.905, P<0.001). We conclude that the variation of codon bias between C. trachomatis and other organisms is much less influenced by phylogenetic lineage and primarily determined by the extent of disparities in GC content.
Edited by You‐Xin JIN
Keywords: Chlamydia, codon usage bias, GC content, gene expression
This work was supported by the grants from the National Natural Science Foundation of China (No. 30271193), International Cooperation and Exchange Fund from the NSFC (No. 30170045) and the Natural Science Foundation of Shandong Province (No. Y2002004)
References
- 1. Grantham R, Gautier C, Gouy M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res, 1980, 8(9): 1893–1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Martin CE, Scheinbach S. Expression of proteins encoded by foreign genes in Saccharomyces cerevisiae . Biotechnol Adv, 1989, 7(2): 155–185.DOI: 10.1016/0734-9750(89)90357-1 [DOI] [PubMed] [Google Scholar]
- 3. Lloyd AT, Sharp PM. Evolution of codon usage patterns: The extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae . Nucleic Acids Res, 1992, 20(20): 5289–5295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Grocock RJ, Sharp PM. Synonymous codon usage in Cryptosporidium parvum: Identification of two distinct trends among genes. Int J Parasitol, 2001, 31(4): 402–412.DOI: 10.1016/S0020-7519(01)00129-1 [DOI] [PubMed] [Google Scholar]
- 5. Schatcher J. Chlamydial infections. N Engl J Med, 1978, 298(10): 540–548. [DOI] [PubMed] [Google Scholar]
- 6. West SK, Rapoza P, Muñoz B, Katala S, Taylor HR. Epidemiology of ocular Chlamydial infection in a trachoma‐hyperendemic area. J Infect Dis, 1991, 163(4): 752–756. [DOI] [PubMed] [Google Scholar]
- 7. Ayaslioglu E, Duzgun N, Erkek E, Inal A. Evidence of chronic Chlamydia pneumoniae infection in patients with Behcet's disease. Scand J Infect Dis, 2004, 36(6‐7): 428–430.DOI: 10.1080/00365540410020730 [DOI] [PubMed] [Google Scholar]
- 8. Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand‐specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res, 2000, 28(10): 2084–2090.DOI: 10.1093/nar/28.10.2084 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Wright F. The “effective number of codons” used in a gene. Gene, 1990, 87 (1): 23–29.DOI: 10.1016/0378-1119(90)90491-9 [DOI] [PubMed] [Google Scholar]
- 10. Moriyama EN, Powell JR. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli . Nucleic Acids Res, 1998, 26(13): 3188–3193.DOI: 10.1093/nar/26.13.3188 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Hou ZC, Yang N. Factors affecting codon usage in Yersinia pestis . Acta Biochim Biophys Sin, 2003, 35(6): 580–586. [PubMed] [Google Scholar]
- 12. Gupta SK, Ghosh TC. Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa . Gene, 2001, 273(1): 63–70.DOI: 10.1016/S0378-1119(01)00576-5 [DOI] [PubMed] [Google Scholar]
- 13. Hou ZC, Yang N. Analysis of factors shaping S. pneumoniae codon usage. Yi Chuan Xue Bao, 2002, 29(8): 747–752. [PubMed] [Google Scholar]
- 14. Gu W, Zhou T, Ma J, Sun X, Lu Z. Analysis of synonymous codon usage in SARS coronavirus and other viruses in the Nidovirales. Virus Res, 2004, 101 (2): 155–161.DOI: 10.1016/j.virusres.2004.01.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Wan XF, Xu D, Kleinhofs A, Zhou J. Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol, 2004, 4(1): 19DOI: 10.1186/1471-2148-4-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Sueoka N, Kawanishi Y. DNA G+C content of the third codon position and codon usage biases of human genes. Gene, 2000, 261(1): 53–62.DOI: 10.1016/S0378-1119(00)00480-7 [DOI] [PubMed] [Google Scholar]
- 17. Sueoka N. Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol, 1999, 34(2): 95–114. [DOI] [PubMed] [Google Scholar]
- 18. Blake WJ, KAErn M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature, 2003, 422(6932): 633–637. [DOI] [PubMed] [Google Scholar]
- 19. Lesnik T, Solomovici J, Deana A, Ehrlich R, Reiss C. Ribosome traffic in E. coli and regulation of gene expression. J Theor Biol, 2000, 202(2): 175–185.DOI: 10.1006/jtbi.1999.1047 [DOI] [PubMed] [Google Scholar]
- 20. Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986, 14(13): 5125–5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Romero H, Zavala A, Musto H, Bernardi G. The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene, 2003, 317(1‐2): 141–147.DOI: 10.1016/S0378-1119(03)00701-7 [DOI] [PubMed] [Google Scholar]
- 22. Ghosh TC, Gupta SK, Majumdar S. Studies on codon usage in Entamoeba histolytica . Int J Parasitol, 2000, 30(6): 715–722.DOI: 10.1016/S0020-7519(00)00042-4 [DOI] [PubMed] [Google Scholar]
- 23. Karlin S, Mrazek J. What drives codon choices in human genes J Mol Biol, 1996, 262(4): 459–472.DOI: 10.1006/jmbi.1996.0528 [DOI] [PubMed] [Google Scholar]
- 24. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. Codon usage between genomes is constrained by genome‐wide mutational processes. Proc Natl Acad Sci USA, 2004, 101(10): 3480–3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Chen LL, Zhang CT. Seven GC‐rich microbial genomes adopt similar codon usage patterns regardless of their phylogenetic lineages. Biochem Biophys Res Commun, 2003, 306(1): 310–317. [DOI] [PubMed] [Google Scholar]