RÉSUMÉ
La plupart des agents viraux pathogènes, ayant émergé durant les dernières décennies chez l’Homme, est d’origine animale (Coronavirus du SRAS, virus de la grippe aviaire, Hantavirus, virus Ebola, virus Marburg, virus Nipah, etc.). Après le contact initial qui a conduit à la transmission inter-espèces per se, ces virus, principalement à ARN, se sont ensuite, souvent adaptés à leur nouvel hôte par des mécanismes variés, puis ont disséminé dans l’espèce humaine par différentes voies. Alors que ces mécanismes évolutifs d’adaptation et ces voies de dissémination inter-humaine ont été largement étudiées, les connaissances concernant les premières étapes de l’émergence virale (comment, par quels moyens, dans quelles conditions, etc.) demeurent encore souvent rudimentaires. La veille microbiologique, associant des travaux épidémiologiques de terrain à des études sérologiques et viromoléculaires, dans des populations à haut risque de transmission inter-espèces, est donc nécessaire pour mieux comprendre les premières étapes de l’émergence virale. Les primates non-humains représentent une importante source potentielle d’agents infectieux transmissibles à l’Homme. Cela a été bien démontré pour les virus de l’immunodéficience simienne (SIV) et les rétrovirus T lymphotropes simiens (STLV). Nous présenterons ici les résultats d’enquêtes sérologiques et moléculaires, réalisées parmi des populations humaines du Sud-Cameroun, pour découvrir et caractériser de nouveaux rétrovirus chez l’Homme. Ces études multidisciplinaires, associant médecins, épidémiologistes, anthropologues et virologues, ont été menées dans des populations villageoises, soit d’origine Bantou, soit d’origine Pygmée, vivant dans la grande forêt équatoriale, dans des régions très proches des habitats des populations de primates non-humains, en particulier chimpanzés, gorilles, mandrills, cercopithèques, etc. La première étude concerne la découverte d’un nouveau rétrovirus humain ; l’HTLV-3, ainsi que sa caractérisation viro-moléculaire. La seconde étude, que nous détaillerons davantage dans cet article, concerne la mise en évidence de la transmission fréquente de rétrovirus foamy simiens aux Hommes, en particulier par des morsures de gorilles et de chimpanzés et la caractérisation des facteurs de risque de cette transmission.
Mots-clés: Afrique centrale, Rétrovirus simiens, Maladies virales/transmission
Abstract
A large proportion of viral pathogens that have emerged during the last decades in humans are considered to have originated from various animal species. This is well exemplified by several recent epidemics such as those of Nipah, Severe Acute Respiratory Syndrome, Avian flu, Ebola, Monkeypox, and Hantaviruses. After the initial interspecies transmission per se, the viruses can disseminate into the human population through various and distinct mechanisms. Some of them are well characterized and understood, thus allowing a certain level of risk control and prevention. Surprisingly and in contrast, the initial steps that lead to the emergence of several viruses, and of their associated diseases, remain still poorly understood. Epidemiological field studies conducted in certain specific high-risk populations are thus necessary to obtain new insights into the early events of this emergence process. Human infections by simian viruses represent increasing public health concerns. Indeed, by virtue of their genetic and physiological similarities, non-human primates (NHPs) are considered to be likely the sources of viruses that can infect humans and thus may pose a significant threat to human population. This is well illustrated by retroviruses, which have the ability to cross species, adapt to a new host and sometimes spread within these new species. Sequence comparison and phylogenetic studies have thus clearly showed that the emergence of human immunodeficiency virus type 1 (HIV-1) and HIV-2 in humans have resulted from several independent interspecies transmissions of different SIV types from Chimpanzees and African monkeys (including sooty mangabeys), respectively, probably during the first part of the last century. The situation for Human T cell Lymphotropic virus type 1 (HTLV-1) is, for certain aspects, quite comparable. Indeed, the origin of most HTLV-1 subtypes appears to be linked to interspecies transmission between STLV-1-infected monkeys and humans, followed by variable periods of evolution in the human host. In this review, after an introduction on emerging viruses, we will briefly present the results of a large epidemiological study performed in groups of Bantus and Pygmies living in villages and settlements located in the rain forest of the South region of Cameroon. These populations are living nearby the habitats of several monkeys and apes, often naturally infected by different retroviruses including SIV, STLV and simian foamy virus. Most of the persons included in this study were hunters of such NHPs, thus at high risk of contact with infected body fluids (blood, saliva,...) during hunting activities. After reviewing the current available data on the discovery, cross-species transmission from monkeys and apes to humans of the simian foamy retroviruses, we will report the results of our study. Such infection is a unique natural model to study the different mechanisms of restriction of retroviral emergence in Humans.
Key-words: Africa, central; Retroviruses, Simian; Virus Diseases/transmission
Footnotes
L’auteur déclare ne pas avoir de liens d’intérêt en relation avec le contenu de cet article.
Tirés-à-part : Professeur Antoine Gessain, même adresse
BIBLIOGRAPHIE
- 1.Wolfe N.D., Dunavan C.P., Diamond J. Origins of major human infectious diseases. Nature. 2007;447:279–283. doi: 10.1038/nature05775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Flanagan M.L., Parrish C.R., Cobey S. Anticipating the species jump: surveillance for emerging viral threats. Zoonoses and public health. 2012;59:155–163. doi: 10.1111/j.1863-2378.2011.01439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Keesing F., Belden L.K., Daszak P. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652. doi: 10.1038/nature09575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Morse S.S., Mazet J.A., Woolhouse M. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380:1956–1965. doi: 10.1016/S0140-6736(12)61684-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Locatelli S., Peeters M. Cross-species transmission of simian retroviruses, how and why they could lead to the emergence of new diseases in the human population. Aids. 2012;26:659–673. doi: 10.1097/QAD.0b013e328350fb68. [DOI] [PubMed] [Google Scholar]
- 6.Hahn B.H., Shaw G.M., De Cock K.M., Sharp P.M. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287:607–614. doi: 10.1126/science.287.5453.607. [DOI] [PubMed] [Google Scholar]
- 7.Gessain A., Mahieux R. Epidemiology, origin and genetic diversity of HTLV-1 retrovirus and STLV-1 simian affiliated retrovirus. Bull. Soc. Pathol. Exot. 2000;93:163–171. [PubMed] [Google Scholar]
- 8.Leroy E.M., Epelboin A., Mondonge V. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector borne and zoonotic diseases. 2009;9:723–728. doi: 10.1089/vbz.2008.0167. [DOI] [PubMed] [Google Scholar]
- 9.Pigott D.M., Golding N., Mylne A. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife. 2014;3 doi: 10.7554/eLife.04395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Enders J.F., Peebles T.C. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. Exp. Biol. Med. 1954;86:277–286. doi: 10.3181/00379727-86-21073. [DOI] [PubMed] [Google Scholar]
- 11.Murray S.M., Linial M.L. Foamy virus infection in primates. J. Med. Primatol. 2006;35:225–235. doi: 10.1111/j.1600-0684.2006.00171.x. [DOI] [PubMed] [Google Scholar]
- 12.Saib A. Non-primate foamy viruses. Current topics in microbiology and immunology. 2003;277:197–211. doi: 10.1007/978-3-642-55701-9_9. [DOI] [PubMed] [Google Scholar]
- 13.Liu W., Worobey M., Li Y. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog. 2008;4 doi: 10.1371/journal.ppat.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Calattini S., Wanert F., Thierry B. Modes of transmission and genetic diversity of foamy viruses in a Macaca tonkeana colony. Retrovirology. 2006;3:23. doi: 10.1186/1742-4690-3-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Mouinga-Ondeme A., Betsem E., Caron M. Two distinct variants of simian foamy virus in naturally infected mandrills (Mandrillus sphinx) and cross-species transmission to humans. Retrovirology. 2010;7:105. doi: 10.1186/1742-4690-7-105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Murray S.M., Picker L.J., Axthelm M.K. Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J. Virol. 2008;82:5981–5985. doi: 10.1128/JVI.00367-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Falcone V., Leupold J., Clotten J. Sites of simian foamy virus persistence in naturally infected African green monkeys, latent provirus is ubiquitous, whereas viral replication is restricted to the oral mucosa. Virology. 1999;257:7–14. doi: 10.1006/viro.1999.9634. [DOI] [PubMed] [Google Scholar]
- 18.Achong B.G., Mansell P.W., Epstein M.A. A new human virus in cultures from a nasopharyngeal carcinoma. J. Pathol. 1971;103:18. [PubMed] [Google Scholar]
- 19.Peeters M., Delaporte E. Simian retroviruses in African apes. Clin. Microbiol. Infect. 2012;18:514–520. doi: 10.1111/j.1469-0691.2012.03843.x. [DOI] [PubMed] [Google Scholar]
- 20.Meiering C.D., Linial M.L. Historical perspective of foamy virus epidemiology and infection. Clin. Microbiol. Rev. 2001;14:165–176. doi: 10.1128/CMR.14.1.165-176.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Schweizer M., Turek R., Hahn H. Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS Res. Hum. Retroviruses. 1995;11:161–170. doi: 10.1089/aid.1995.11.161. [DOI] [PubMed] [Google Scholar]
- 22.Schweizer M., Falcone V., Gange J. Simian foamy virus isolated from an accidentally infected human individual. J. Virol. 1997;71:4821–4824. doi: 10.1128/jvi.71.6.4821-4824.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Heneine W., Switzer W.M., Sandstrom P. Identification of a human population infected with simian foamy viruses. Nat. Med. 1998;4:403–407. doi: 10.1038/nm0498-403. [DOI] [PubMed] [Google Scholar]
- 24.Brooks J.I., Rud E.W., Pilon P.G., et al. Cross-species retroviral transmission from macaques to human beings. Lancet. 2002;360:387–388. doi: 10.1016/S0140-6736(02)09597-1. [DOI] [PubMed] [Google Scholar]
- 25.Switzer W.M., Bhullar V., Shanmugam V. Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. J. Virol. 2004;78:2780–2789. doi: 10.1128/JVI.78.6.2780-2789.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Huang F., Wang H., Jing S., Zeng W. Simian foamy virus prevalence in Macaca mulatta and zookeepers. AIDS Res. Hum. Retroviruses. 2012;28:591–593. doi: 10.1089/AID.2011.0305. [DOI] [PubMed] [Google Scholar]
- 27.Wolfe N.D., Switzer W.M., Carr J.K. Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004;363:932–937. doi: 10.1016/S0140-6736(04)15787-5. [DOI] [PubMed] [Google Scholar]
- 28.Betsem E., Rua R., Tortevoye P. Frequent and recent human acquisition of simian foamy viruses through apes’ bites in central Africa. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Calattini S., Nerrienet E., Mauclere P. Natural simian foamy virus infection in wildcaught gorillas, mandrills and drills from Cameroon and Gabon. J. Gen.Virol. 2004;85:3313–3317. doi: 10.1099/vir.0.80241-0. [DOI] [PubMed] [Google Scholar]
- 30.Calattini S., Nerrienet E., Mauclere P. Detection and molecular characterization of foamy viruses in Central African chimpanzees of the Pan troglodytes troglodytes and Pan troglodytes vellerosus subspecies. J. Med. Primatol. 2006;35:59–66. doi: 10.1111/j.1600-0684.2006.00149.x. [DOI] [PubMed] [Google Scholar]
- 31.Mouinga-Ondeme A., Caron M., Nkoghe D. Cross-species transmission of simian foamy virus to humans in rural Gabon, Central Africa. J. Virol. 2012;86:1255–1260. doi: 10.1128/JVI.06016-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Calattini S., Betsem E.B., Froment A. Simian foamy virus transmission from apes to humans, rural Cameroon. Emerg. Infect. Dis. 2007;13:1314–1320. doi: 10.3201/eid1309.061162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Gessain A., Rua R., Betsem E. HTLV-3/4 and simian foamy retroviruses in humans: discovery, epidemiology, cross-species transmission and molecular virology. Virology. 2013;435:187–199. doi: 10.1016/j.virol.2012.09.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Jones-Engel L., Engel G.A., Schillaci M.A. Primate-to-human retroviral transmission in Asia. Emerg. Infect. Dis. 2005;11:1028–1035. doi: 10.3201/eid1107.040957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Jones-Engel L., May C.C., Engel G.A. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg. Infect. Dis. 2008;14:1200–1208. doi: 10.3201/eid1408.071430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Engel G.A., Small C.T., Soliven K. Zoonotic simian foamy virus in Bangladesh reflects diverse patterns of transmission and co-infection. Emerging Microbes and Infections. 2013;2 doi: 10.1038/emi.2013.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Jones-Engel L., Engel G.A., Heidrich J. Temple monkeys and health implications of commensalism, Kathmandu, Nepal. Emerg. Infect. Dis. 2006;12:900–906. doi: 10.3201/eid1206.060030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Rua R., Betsem E., Gessain A. Viral latency in blood and saliva of simian foamy virusinfected humans. PLoS One. 2013;8 doi: 10.1371/journal.pone.0077072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Rua R., Betsem M., Montange T., et al. In vivo cellular tropism of gorilla simian foamy virus in blood of infected humans. J. Virol. 2014;88:13429–13435. doi: 10.1128/JVI.01801-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Gessain A., Cassar O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front Microbiol. 2012;3:388. doi: 10.3389/fmicb.2012.00388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Switzer W.M., Garcia A.D., Yang C. Coinfection with HIV-1 and simian foamy virus in West Central Africans. J. Infect. Dis. 2008;197:1389–1393. doi: 10.1086/587493. [DOI] [PubMed] [Google Scholar]