Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 15;44(9):1725–1730. doi: 10.1016/0006-2952(92)90065-Q

Inhibition of aminopeptidases N, A and W

A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme

Stephen Tieku 1, Nigel M Hooper 1,
PMCID: PMC7111144  PMID: 1360211

Abstract

The effects of a range of metallopeptidase inhibitors on the activities of the porcine kidney cell surface zinc aminopeptidases, aminopeptidase A (AP-A; EC 3.4.11.2), aminopeptidase N (AP-N; EC 3.4.11.7) and aminopeptidase W (AP-W; EC 3.4.11.16), have been directly compared. Amastatin and probestin were effective against all three aminopeptidases, with the concentration of inhibitor required to cause 50% inhibition (I50) in the low micromolar range (I50 = 1.5–20 μM), except for probestin with AP-N which displayed an I50 of 50 nM. Actinonin failed to inhibit significantly either AP-A or AP-W, and thus can be considered a relatively selective inhibitor (I50 = 2.0 μM of AP-N. In contrast, bestatin was a relatively poor inhibitor of AP-N (I50 = 89 μm) and failed to inhibit AP-A, but was more potent towards AP-W (I50 = 7.9 μM). Thus, some of the observed chemotherapeutic actions of bestatin may be due to inhibition of cell-surface AP-W. A number of other metallopeptidase inhibitors, including inhibitors of endopeptidase-24.11 (EC 3.4.24.11) and membrane dipeptidase (EC 3.4.13.11), and the carboxylalkyl and phosphoryl inhibitors of angiotensin converting enzyme (EC 3.4.15.1) failed to inhibit significantly AP-A, AP-N or AP-W. However, AP-W was inhibited with I50 values in the micromolar range by the sulphydryl converting enzyme inhibitors rentiapril (I50 = 1.6 μM), zofenoprilat (I50 = 7.0 μM) and YS 980 (I50 = 17.7 μM). Neither AP-A nor AP-N were affected by these sulphydryl compounds. Inhibition of AP-W may account for some of the side effects noted with the clinical use of the sulphydryl converting enzyme inhibitors. The availability of compounds which are totally selective for AP-W over any of the other mammalian cell surface zinc aminopeptidases may aid in identifying endogenous substrates, and thus physiological or pathophysiological role(s) of AP-W.

Abbreviations: AP-A, aminopeptidase A; AP-N, aminopeptidase N; AP-W, aminopeptidase W; AP-P, aminopeptidase P; CD, cluster differentiation antigen; I50, concentration of inhibitor required to cause 50% inhibition

References

  • 1.Kenny AJ, Hooper NM. Peptidases involved in the metabolism of bioactive peptides. In: Henrickson JH, editor. Degradation of Bioactive Substances: Physiology and Pathophysiology. CRC Press; Boca Raton: 1991. pp. 47–79. [Google Scholar]
  • 2.Carretero OA, Scicli AG. Zinc metallopeptidase inhibitors: a novel antihypertensive treatment. Hyper-tension. 1991;68:366–371. doi: 10.1161/01.hyp.18.3.366. [DOI] [PubMed] [Google Scholar]
  • 3.Mancia G. Angiotensin-converting enzyme inhibitors in the treatment of hypertension. J Cardiovasc Pharmacol. 1991;18(SuppI 7):S1–S3. [PubMed] [Google Scholar]
  • 4.Letarte M, Vera S, Tran R, Addis JBL, Onizuka RJ, Quackenbush EJ, Jongeneel CV, McInnes RR. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med. 1988;168:1247–1253. doi: 10.1084/jem.168.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Look AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD 13 (gp 150) is identical to aminopeptidase N. J Clin Invest. 1989;83:1299–1307. doi: 10.1172/JCI114015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hegen M, Niedobitek G, Klein CE, Stein H, Fleischer B. The T cell triggering molecule Tp103 is associated with dipeptidyl aminopeptidase IV activity. J Immunol. 1990;144:2908–2914. [PubMed] [Google Scholar]
  • 7.Wu Q, Li L, Cooper MD, Pierres M, Gorvel JP. 2nd Edn. Vol. 88. 1991. Aminopeptidase A activity of the murine β-lymphocyte differentiation antigen BP-1/6C3; pp. 676–680. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Delmas B, Geln J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature. 1992;357:417–420. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH. Look AT and Holmes KV, Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357:420–422. doi: 10.1038/357420a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hooper NM, Hryszko J, Turner AJ. Purification and characterization of pig kidney aminopeptidase P. A glycosyl-phosphatidylinositol anchored ectoenzyme. Biochem J. 1990;267:509–515. doi: 10.1042/bj2670509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Simmons WH, Orawski AT. Membrane-bound aminopeptidase P from bovine lung. Its purification. properties and degradation of bradykinin. J Biol Chem. 1992;267:4897–4903. [PubMed] [Google Scholar]
  • 12.McDonald JK, Barrett AJ. Academic Press; London: 1986. Mammalian Proteases: a Glossary and Bibliography, Volume 2, Exopeptidases. [Google Scholar]
  • 13.Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ. The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J. 1985;231:445–449. doi: 10.1042/bj2310445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Matsas R, Turner AJ, Kenny AJ. Endopeptidase-24.11 and aminopeptidase activity in brain synaptic membranes are jointly responsible for the hydrolysis of cholecystokinin octapeptide ( FEBS Lett. 1984;175:124–128. doi: 10.1016/0014-5793(84)80583-9. [DOI] [PubMed] [Google Scholar]
  • 15.Nau R, Schäfer G, Deacon CF, Cole T, Agoston DV, Conlon JM. Proteolytic inactivation of substance P and neurokinin A in the longitudinal muscle layer of guinea pig small intestine. J Neurochem. 1986;47:856–864. doi: 10.1111/j.1471-4159.1986.tb00690.x. [DOI] [PubMed] [Google Scholar]
  • 16.Nagatsu I, Nagatsu T, Yamamoto T, Glenner GG, Mehl JW. Purification of aminopeptidase A in human serum and degradation of angiotensin II by the purified enzyme. Biochim Biophys Acta. 1970;198:255–270. doi: 10.1016/0005-2744(70)90058-6. [DOI] [PubMed] [Google Scholar]
  • 17.Gee NS, Kenny AJ. Proteins of the kidney microvillar membrane. The 130 kDa protein in pig kidney, recognised by monoclonal antibody GK5C1 is an ectoenzyme with aminopeptidase activity. Biochem J. 1985;230:753–764. doi: 10.1042/bj2300753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Gee NS, Kenny AJ. Proteins of the kidney microvillar membrane. Enzymic and molecular properties of aminopeptidase W. Biochem J. 1987;246:97–102. doi: 10.1042/bj2460097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hooper NM., Hryszko J, Oppong SY, Turner AJ. Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. Hypertension. 1992;19:281–285. doi: 10.1161/01.hyp.19.3.281. [DOI] [PubMed] [Google Scholar]
  • 20.Bowes MA, Kenny AJ. An imrnunohistochemical study of endopeptidase-24.11 and aminopeptidase N in lymphoid tissues. Immunology. 1987;60:247–253. [PMC free article] [PubMed] [Google Scholar]
  • 21.Booth AG, Kenny AJ. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974;142:575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Fulcher IS, Kenny AJ. Proteins of the kidney microvillar membrane. The amphipathic forms of endopeptidase purified from pig kidneys. Biochem J. 1983;211:743–753. doi: 10.1042/bj2110743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hooper NM, Low MG, Turner AJ. Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem J. 1987;244:465–469. doi: 10.1042/bj2440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Suda H, Aoyagi T, Takeuchi T, Umezawa H. Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys. 1976;177:196–200. doi: 10.1016/0003-9861(76)90429-x. [DOI] [PubMed] [Google Scholar]
  • 25.Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. Bestatin, a new aminopeptidase B inhibitor produced by actinomycetes. J Antibiot. 1976;29:97–99. doi: 10.7164/antibiotics.29.97. [DOI] [PubMed] [Google Scholar]
  • 26.Rich DH, Moon BJ, Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem. 1984;27:417–422. doi: 10.1021/jm00370a001. [DOI] [PubMed] [Google Scholar]
  • 27.Giros B, Gros C, Solhonne B, Schwartz J-C. Characterization of aminopeptidases responsible for inactivating endogenous (Met5) enkephalin in brain slices using peptidase inhibitors and anti-amino-peptidase M antibodies. Mol Pharmacol. 1986;29:281–287. [PubMed] [Google Scholar]
  • 28.Palmieri FE, Bausback HH, Ward PE. Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M. Biochem Pharmacol. 1989;38:173–180. doi: 10.1016/0006-2952(89)90165-2. [DOI] [PubMed] [Google Scholar]
  • 29.Umezawa H, Ishizuka M, Aoyagi T, Takeuchi T. Enhancement of delayed-type hypersensitivity by bestatin, an inhibitor of aminopeptidase B and leucine aminopeptidase. J Antibiot. 1976;29:857–859. doi: 10.7164/antibiotics.29.857. [DOI] [PubMed] [Google Scholar]
  • 30.Ishizuka M, Masuda T, Kanbayashi N, Fukasawa S, Takeuchi T, Aoyagi T, Umezawa H. Effect of bestatin on mouse immune system and experimental murine tumours. J Antibiot. 1980;33:642–652. doi: 10.7164/antibiotics.33.642. [DOI] [PubMed] [Google Scholar]
  • 31.Ishizuka M, Sato J, Sugiyama Y, Takeuchi T, Umezawa H. Mitogenic effect of bestatin on lymphocytes. J Antibiot. 1980;33:653–662. doi: 10.7164/antibiotics.33.653. [DOI] [PubMed] [Google Scholar]
  • 32.Tsuruo T, Naganuma K, Iida H, Yamori T, Tsukagoshi S, Sakurai Y. Inhibition of lymph node metastasis of P388 leukemia by bestatin in mice. J Antibiot. 1981;34:1206–1209. doi: 10.7164/antibiotics.34.1206. [DOI] [PubMed] [Google Scholar]
  • 33.Saiki I, Murata J, Watanabe K, Fujii H, Abe F, Azuma I. Inhibition of tumour cell invasion by Ubenimex (bestatin) in vitro. Jpn J Cancer Res. 1989;80:873–878. doi: 10.1111/j.1349-7006.1989.tb01729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ota K. Review of ubenimex (bestatin) clinical research. Biomed Pharmacol. 1991;45:55–60. doi: 10.1016/0753-3322(91)90123-b. [DOI] [PubMed] [Google Scholar]
  • 35.Aoyagi T, Yoshida S, Nakamura Y, Shigihara Y, Hamada M, Takeuchi T. Probestin, a new inhibitor of aminopeptidase M, produced by Streptomyces azureus MH663-2F6. J Antibiot. 1990;43:143–148. doi: 10.7164/antibiotics.43.143. [DOI] [PubMed] [Google Scholar]
  • 36.Aoyagi T, Tobe H, Kojima F, Hamada M, Takeuchi T, Umezawa H. Amastatin, an inhibitor of aminopeptidase A, produced by actinomycetes. J Antibiot. 1978;31:636–638. doi: 10.7164/antibiotics.31.636. [DOI] [PubMed] [Google Scholar]
  • 37.Umezawa H, Aoyagi T, Tanaka T, Suda M, Okuyama A, Naganawa H, Hamada M, Takeuchi T. Production of actinonin, an inhibitor of aminopeptidase M. by actinomycetes. J Antibiot. 1985;38:1629–1630. doi: 10.7164/antibiotics.38.1629. [DOI] [PubMed] [Google Scholar]
  • 38.Cohen ML. Synthetic and fermentation-derived angio-tensin-converting enzyme inhibitors. Annu Rev Pharmacol Toxicol. 1985;25:307–323. doi: 10.1146/annurev.pa.25.040185.001515. [DOI] [PubMed] [Google Scholar]
  • 39.Unger T, Gohlke P, Gruber M-G. Converting enzyme inhibitors. In: Ganten D, Mulrow PJ, editors. Pharmacology of Anti-hypertensive Therapeutics. Springer; Berlin: 1990. pp. 377–481. [Google Scholar]
  • 40.Thorsett ED, Wyvratt MJ. Inhibition of zinc peptidases that hydrolyse neuropeptides. In: Turner AJ, editor. Neuro-peptides and their Peptidases. Ellis Horwood; Chichester, U.K: 1987. pp. 229–292. [Google Scholar]
  • 41.Kahan FM, Kropp H, Sundelof JG, Birnbaum J. Thienamycin: development of imipenem-cilastatin. J Antimicrob Chemother. 1983;12(Suppl D):1–35. doi: 10.1093/jac/12.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  • 42.Edwards CRW, Padfield PL. Angiotensin-converting enzyme inhibitors: past, present and bright future. Lancet. 1985;i:30–34. doi: 10.1016/s0140-6736(85)90975-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Pharmacology are provided here courtesy of Elsevier

RESOURCES