Abstract
The Golgi apparatus-complex (GA), is a key organelle involved in several posttranslational modifications of polypeptides destined for lysosomes, plasma membranes and secretion. As reported from this laboratory, certain astrocytes in rat brain contain cisternae of the GA not only in perikarya, but also in processes. In order to further investigate which type of astrocytes contain GA in processes we conducted the present study using primary cultures of rat astrocytes and organelle specific antibodies against the GA and the rough endoplasmic reticulum (RER). While the perikarya of all cells contained elements of the GA, only a single process of a subset of type I astrocytes, negative to antibodies A2B5 and HNK-1, contained GA. In contrast, elements of the RER were found within perikarya and all processes. In order to confirm that the immunostained structures in processes indeed represent the GA, we exposed cultures to Brefeldin A (BFA), a secretion blocker which disperses the GA and redistributes it to the RER. We observed that BFA disrupted the GA of both perikarya and processes. However, astrocytes were resistant to prolonged incubations with BFA, while a similar treatment killed cultured fibroblasts and PC-12 cells. Furthermore, in astrocytes exposed to BFA for several days, the delicate network of glial fibrillary acidic protein (GFAP), was replaced by large perinuclear masses of the protein. These observations demonstrate that a subset of type I astrocytes have a single process with elements of the GA. We suggest that this specialization of the GA may be related to yet unrecognized secretory or protein processing functions of these cells. The resistance of astrocytes to BFA and the striking changes in their cytoskeleton induced by the drug, may contribute to studies on the mechanism(s) of action of BFA.
Keywords: Golgi apparatus, Brefeldin A, Glial fibrillary acidic protein, Astrocyte type I, Astrocyte type II, MG-160, Electron microscopy, Immunohistochemistry, A2B5, HNK-1, Cell process
Reference
- 1.Abo T., Balch C.M. A diffetrentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1) J. Immunol. 1981;127:1024–1029. [PubMed] [Google Scholar]
- 2.Al-Ali S.Y., Al-Zuhair A.G., Dawod B. Ultrastructural study of phagocytic activities of young astrocytes in injuted neonatal rat brain following intracerebral injection of colloidal carbon. Glia. 1988;1:211–218. doi: 10.1002/glia.440010306. [DOI] [PubMed] [Google Scholar]
- 3.Bacallao R., Antony C., Dotti C., Karsenti E., Stelzer E.H., Simons K. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell. Biol. 1989;109:2817–2832. doi: 10.1083/jcb.109.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Barres B.A. Glial ion channels. Curr. Opin. Neurobiol. 1991;1:354–359. doi: 10.1016/0959-4388(91)90052-9. [DOI] [PubMed] [Google Scholar]
- 5.Black J.A., Waxman S.G., Friedman B., Elmer L.W., Angelides K.J. Sodium channels in astrocytes of rat optic nerve in situ: immuno-electron microscopic studies. Glia. 1989;2:353–369. doi: 10.1002/glia.440020508. [DOI] [PubMed] [Google Scholar]
- 6.Burgess T.L., Skoufias D.A., Wilson L. Disruption of the Golgi apparatus with Brefeldin A does not destabilize the associated detyrosinated microtubule network. Cell Motil. Cytoskel. 1991;20:289–300. doi: 10.1002/cm.970200405. [DOI] [PubMed] [Google Scholar]
- 7.Celis A., Madsen P., Nielsen H.V., Rasmussen H.H., Thiessen H., Lauridsen J.B., van Deurs B., Celis J.E. Human proteins IEF 58 and 57a are associated with the Golgi apparatus. FEBS Lett. 1988;227:14–20. doi: 10.1016/0014-5793(88)81404-2. [DOI] [PubMed] [Google Scholar]
- 8.Chen Y., Hickey W.F., Mezitis S.G.E., Stieber A., Lavi E., Gonatas J.O., Gonatas N.K. Monoclonal antibody 2H1 detects a 60–65 kD membrane polypeptide of the rough endoplasmic reticulum of neurons and stains selectively cells of several rat tissues. J. Histochem. Cytochem. 1991;39:635–643. doi: 10.1177/39.5.2016513. [DOI] [PubMed] [Google Scholar]
- 9.Chicheportiche Y., Tartakoff A.M. Monoclonal antibodies as markers of the endocytic and secretory pathways. Eur. J. Cell. Biol. 1987;44:135–143. [PubMed] [Google Scholar]
- 10.Croul S.E., Mezitis S.G.E., Gonatas N.K. An anti-organelle antibody in pathology. The chromatolytic reaction studied with a monoclonal antibody against the Golgi apparatus. Am. J. Pathol. 1988;133:355–362. [PMC free article] [PubMed] [Google Scholar]
- 11.Croul S.E., Mezitis S.G.E., Stieber A., Chen Y., Gonatas J.O., Goud B., Gonatas N.K. Immunohistochemical visualization of the Golgi apparatus in several species, including human, and tissue with antiserum against MG-160, a sialoglyco-protein of rat Golgi apparatus. J. Histochem. Cytochem. 1990;38:957–963. doi: 10.1177/38.7.2355176. [DOI] [PubMed] [Google Scholar]
- 12.Doms R.W., Russ G., Yewdell J.W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Duden R., Allan V., Kreis T. Involvement of β-COP in membrane traffic through the Golgi complex. Trends in Cell Biol. 1991;1:14–19. doi: 10.1016/0962-8924(91)90064-g. [DOI] [PubMed] [Google Scholar]
- 14.Duden R., Griffiths G., Frank R., Argos P., Kreis T.E. β-COP, a 110 kd protein associated with non-clathrin-coated vesicles of the Golgi complex, shows homology to β-adaptin. Cell. 1991;64:649–665. doi: 10.1016/0092-8674(91)90248-w. [DOI] [PubMed] [Google Scholar]
- 15.Eisenbarth G.S., Walsh F.S., Nirenberg M. 2nd edn. Vol. 76. 1979. Monoclonal antibody to a plasma membrane antigen of neurons; pp. 4913–4917. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Eng L.F. Regulation of glial intermediate filaments in astrogliosis. In: Norenberg M.D., Hertz L., Schousboe A., editors. The Biochemical Pathology of Astrocytes. Alan R. Liss; New York: 1988. pp. 79–90. [Google Scholar]
- 17.Eng L.F., Reier P.J., Houle J.D. Astrocyte activation and fibrous gliosis: glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. In: Seil F.J., Herbert H., Carlson B.M., editors. Progress in Brain Research. Elsevier; Amsterdam: 1987. pp. 439–455. [DOI] [PubMed] [Google Scholar]
- 18.Eng L.F., Shiurba R.A. Glial fibrillary acidic protein: a review of structure, function and clinical applications. In: Marangos P.J., Campbell I., Cohen R.M., editors. Neuronal and Glial Proteins: Structure, Function, and Clinical Application. Academic Press; San Diego: 1988. pp. 339–359. [Google Scholar]
- 19.Facci L., Skaper S.D., Levin D.L., Varon S. Dissociation of the stellate morphology from intracellular cyclyc AMP levels in cultured rat brain astroglial cells: effect of ganglioside GM1 and lysophosphatidylserine. J. Neurochem. 1987;48:566–573. doi: 10.1111/j.1471-4159.1987.tb04130.x. [DOI] [PubMed] [Google Scholar]
- 20.Farquhar M.G., Palade G.E. The Golgi apparatus (complex)-(1954–1981) from artifact to center stage. J. Cell. Biol. 1981;91:77S–103S. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.ffrench-Constant C., Raff M.C. The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature. 1986;323:335–338. doi: 10.1038/323335a0. [DOI] [PubMed] [Google Scholar]
- 22.Fleischer B., Zambrano F. Golgi apparatus of rat kidney. Preparation and role in sulphatide formation. J. Biol. Chem. 1974;249:5995. [PubMed] [Google Scholar]
- 23.Fontana A., Fiertz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T cells. Nature. 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
- 24.Fontana A., Frei K., Bodmer S., Hofer E. Immune mediated encephalitis: on the role of antigen presenting cells in the brain. Immunol. Rev. 1987;100:185–201. doi: 10.1111/j.1600-065X.1987.tb00532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Fontana A., Kristensen F., Dubs R., Gemsa D., Weber E. Production of prostaglandin E and interleukin like factors by cultured astrocytes and C-6 glioma cells. J. Immunol. 1982;129:2419. [PubMed] [Google Scholar]
- 26.Gonatas J.O., Mezitis S.G.E., Stieber A., Fleischer B., Gonatas N.K. MG-160, a novel sialoglycoprotein of the medial cisternae of the Golgi apparatus. J. Biol. Chem. 1989;264:646–653. [PubMed] [Google Scholar]
- 27.Graham C.R., Karnovsky M.J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 1966;14:291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- 28.Guesdon J.-L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cytochem. 1979;27:1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
- 29.Hosli E., Hosli L. Receptors for neurotransmitters on astrocytes in the mammalian central nervous system. Prog. Neurobiol. 1993;40:477–506. doi: 10.1016/0301-0082(93)90019-o. [DOI] [PubMed] [Google Scholar]
- 30.Hunziker W., Whitney J.A., Mellman I. Selective inhibition of transcytosis by Brefeldin A in MDCK cells. Cell. 1991;67:617–627. doi: 10.1016/0092-8674(91)90535-7. [DOI] [PubMed] [Google Scholar]
- 31.Johnston, A.P., Stieber, A. and Gonatas, N.K., Retrograde traffic of MG-160, a medial Golgi sialoglycoprotein, from the Trans Golgi Network to the Golgi cisternae, in press. [DOI] [PubMed]
- 32.Karnowsky M.J. Eleventh Annual Meeting of the American Society for Cell Biology. 1971. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy; p. 146. Abstract 2984. [Google Scholar]
- 33.Kerr J.B. An ultrastructural and morphometric analysis of the Sertoli cell during the spermatogenic cycle of the rat. Anat. Embryol. 1988;179:191–203. doi: 10.1007/BF00304701. [DOI] [PubMed] [Google Scholar]
- 34.Ktistakis N.T., Roth M.G., Bloom G.S. PtK1 cells contain nondiffusible, dominant factor that makes the Golgi apparatus resistant to Brefeldin A. J. Cell. Biol. 1991;113:1009–1023. doi: 10.1083/jcb.113.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Kuchler S., Zanetta J.-P., Bon S., Zaepfel M., Massoulie J., Vincendon G. Expression and localization in the developing cerebellum of the carbohydrate epitopes revealed by Elec-39, an IgM monoclonal antibody related to HNK-1. Neuroscience. 1991;41:551–562. doi: 10.1016/0306-4522(91)90348-r. [DOI] [PubMed] [Google Scholar]
- 36.Kupfer A., Dennert G., Singer S.J. 2nd edn. Vol. 80. 1983. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets; pp. 7224–7228. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Kupfer A., Kronebusch P.J., Rose J.K., Singer S.J. A critical role for the polarization of membrane recycling in cell motility. Cell Motil. Cytoskel. 1987;8:182–189. doi: 10.1002/cm.970080210. [DOI] [PubMed] [Google Scholar]
- 38.Kupfer A., Louvard D., Singer S.J. 2nd edn. Vol. 79. 1982. The polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound; pp. 2603–2607. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Kupfer A., Singer S.J., Dennert G. On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane associated cytoskeleton in the effector cell. J. Exp. Med. 1986;163:489–498. doi: 10.1084/jem.163.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Lacocq J., Montesano R. Non random positioning of Golgi apparatus in pancreatic B cells. Anat. Rec. 1985;213:182–186. doi: 10.1002/ar.1092130210. [DOI] [PubMed] [Google Scholar]
- 41.Lavi E., Suzumura A., Hirayama M., Highkin M.K., Dambach D.M., Silberberg D.H., Weiss S.R. Coronavirus MHV-A59 causes a persistent, productive infection in glial cells. Microb. Pathogen. 1987;3:79–86. doi: 10.1016/0882-4010(87)90066-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Lavi E., Suzumura A., Murray E.M., Silberberg D.H., Weiss S.R. Induction of MHC class I antigens on glial cells is dependent on persistent mouse hepatitis virus infection. J. Neuroimmunol. 1989;22:107–111. doi: 10.1016/0165-5728(89)90040-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Lee V.M.-Y., Page C.D., Wu H.L., Schlaepfer W.W. Monoclonal antibodies to gel excised glial filament protein and their reactivities with other intermediate filament proteins. J. Neurochem. 1984;42:25. doi: 10.1111/j.1471-4159.1984.tb09692.x. [DOI] [PubMed] [Google Scholar]
- 44.Levi G., Gallo V., Ciotti M.T. 2nd edn. Vol. 83. 1986. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and ‘neuron-like’ gamma-aminobutyric acid transport; pp. 1504–1508. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Levison S.W., Goldman J.E. Astrocyte origins. In: Murphy S., editor. Astrocytes: Pharmacology and Function. Academic Press; San Diego, CA: 1993. pp. 1–22. [Google Scholar]
- 46.Lieberman A.P., Pitha P.M., Shin H.S., Shin M.L. 2nd edn. Vol. 86. 1989. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus; pp. 6348–6352. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Lippincott-Schwartz J., Yuan L.C., Bonifacino J.S., Klausner R.D. Rapid redistribution of Golgi proteins into the ER in cells treated with Brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989;56:801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 1982;92:92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.MacKhann G.M., Ho W. The in vivo and in vitro synthesis of sulphatides during development. J. Neurochem. 1967;14:717–724. doi: 10.1111/j.1471-4159.1967.tb10305.x. [DOI] [PubMed] [Google Scholar]
- 50.McCarthy K.D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980;85:890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.McCarthy K.D., Salm A.K. Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience. 1991;41:325–333. doi: 10.1016/0306-4522(91)90330-q. [DOI] [PubMed] [Google Scholar]
- 52.Miller R.H., Abney E.R., ffrench-Constant C., Lindsay R., Patel R., Stone J., Raff M.C. Is reactive gliosis a property of a distinct subpopulation of astrocytes? J. Neurosci. 1986;6:22–29. doi: 10.1523/JNEUROSCI.06-01-00022.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Miller R.H., ffrench-Constant C., Raff M.C. The macroglial cells of the rat optic nerve. Annu. Rev. Neurosci. 1989;12:517. doi: 10.1146/annurev.ne.12.030189.002505. [DOI] [PubMed] [Google Scholar]
- 54.Miller R.H., Raff M.C. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J. Neurosci. 1984;4:585–592. doi: 10.1523/JNEUROSCI.04-02-00585.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Mourelatos Z., Adler H., Hirano A., Donnenfeld H., Gonatas J.O., Gonatas N.K. 2nd edn. Vol. 87. 1990. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies; pp. 4393–4395. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Newman E.A. Inward-rectifying potassium channels in retinal glial (Muller) cells. J. Neurosci. 1993;13:3333–3345. doi: 10.1523/JNEUROSCI.13-08-03333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Palade G.E. Intracellular aspects of the process of protein transport. Science. 1975;189:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- 58.Raff M.C. Glial cell diversification in the rat optic nerve. Science. 1989;243:1450–1455. doi: 10.1126/science.2648568. [DOI] [PubMed] [Google Scholar]
- 59.Raff M.C., Miller R.H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte depending on culture medium. Nature. 1983;303:390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
- 60.Reaves B., Banting G. Perturbation of the morphology of the trans Golgi network following Brefeldin A treatment: redistribution of a TGN-specific integral membrane protein, TGN38. J. Cell Biol. 1992;116:85–94. doi: 10.1083/jcb.116.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Reier P.J., Eng L.F., Jakeman L. Reactive astrocyte and axonal overgrowth in the injured CNS: is gliosis really an impediment to regeneration? In: Seil F.J., editor. Neuroregeneration Research for the Clinician, Seil Fed. Alan R. Liss Inc.; New York: 1989. pp. 183–209. [Google Scholar]
- 62.Roth J., Taatjes D.J., Weinstein J., Paulson J.C., Greenwell P., Watkins W.M. Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J. Biol. Chem. 1986;261:14307–14312. [PubMed] [Google Scholar]
- 63.Sadoul R., Fahrig T., Schachner M. Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J. Neurosci. Res. 1990;25:1–13. doi: 10.1002/jnr.490250102. [DOI] [PubMed] [Google Scholar]
- 64.Saraste J., Palade G.E., Farquhar M.G. Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J. Cell. Biol. 1987;105:2021–2029. doi: 10.1083/jcb.105.5.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Schweitzer A., Fransen J.A.M., Bachi T., Ginsel L., Hauri H.P. Identification by monoclonal antibody of a 53-kD protein associated with the tubulo-vesicular compartment at the cis side of the Golgi apparatus. J. Cell. Biol. 1988;107:1643–1653. doi: 10.1083/jcb.107.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Skaper S.D., Facci L., Rudge J., Katoh-Semba R., Manthorpe M., Varon S. Morphological modulation of cultured rat brain astroglial cells: antagonism by Ganglioside GM1. Dev. Brain. Res. 1986;25:21–31. doi: 10.1016/0165-3806(86)90148-3. [DOI] [PubMed] [Google Scholar]
- 67.Sobel R.A., Mitchell M.E., Fondren G. Intercellular adhesion molecule 1 (ICAM-1) in cellular immune reactions in the central nervous system. Am. J. Pathol. 1990;136:1309–1316. [PMC free article] [PubMed] [Google Scholar]
- 68.Stieber A., Gonatas J.O., Gonatas N.K., Louvard D. The Golgi apparatus-complex of neurons and astrocytes studied with an anti-organelle antibody. Brain Res. 1987;408:13–21. doi: 10.1016/0006-8993(87)90353-2. [DOI] [PubMed] [Google Scholar]
- 69.Sugai M., Chen C.-H., Wu H.C. Staphylococcal ADP-ribosyltransferase-sensitive small G protein is involved in brefeldin A action. J. Biol. Chem. 1992;267:21297–21299. [PubMed] [Google Scholar]
- 70.Suzumura A., Lavi E., Bhat S., Murasko D.M., Weiss S.R., Silberberg D.H. Induction of glial cell MHC antigen expression in neurotropic coronavirus infection: characterization of the H-2 inducing soluble factor elaborated by infected brain cells. J. Immunol. 1988:2068–2072. [PubMed] [Google Scholar]
- 71.Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
- 72.Tower D.B. Development of knowledge about astrocytes since Virchow. In: Norenberg M.D., Hertz L., Schousboe A., editors. The Biochemical Pathology of Astrocytes. Alan R. Liss; New York: 1988. pp. 3–18. [Google Scholar]
- 73.Traugott U. Multiple sclerosis: relevance of class I and class II MHC expressing cells to lesion development. J. Neuroimmunol. 1987;16:283–302. doi: 10.1016/0165-5728(87)90082-8. [DOI] [PubMed] [Google Scholar]
- 74.Wilkin G.P., Marriott D.R., Cholewinski A.J. Astrocyte heterogeneity. Trends Neurosci. 1990;13:43–46. doi: 10.1016/0166-2236(90)90065-i. [DOI] [PubMed] [Google Scholar]
- 75.Yuan L., Barriocanal J.G., Bonifacino J., Sandoval I.V. Two integral membrane proteins located in the cis-medial ant trans-part of the Golgi system aquire sialated N-linked carbohydrates and display different turnovers and sensitivity to cAMP dependent phosphorylation. J. Cell. Biol. 1987;105:215–227. doi: 10.1083/jcb.105.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]