Abstract
A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.
Keywords: epidemics, entropy, inflexion point
Footnotes
Recommended by SHE ZhenSu (Associate Editor)
References
- 1.Kamps-Hoffmann. SARS References-05/2003[OL] Paris: Flying Publishers; 2003. [Google Scholar]
- 2.Ma Z, Zhou Y, Wu J. Modeling and Dynamics of Infectious Diseases. Singapore: World Scientific Publishing; 2009. [Google Scholar]
- 3.Bauch C T, Lloyd-Smith J O, Coffee M P, et al. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16:791–801. doi: 10.1097/01.ede.0000181633.80269.4c. [DOI] [PubMed] [Google Scholar]
- 4.Bian L. Spatial approaches to modeling dispersion of communicable diseases — A review. Trans GIS. 2012;17:1–17. doi: 10.1111/j.1467-9671.2012.01329.x. [DOI] [Google Scholar]
- 5.Donnelly C A, Ghani A C, Leung G M, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. The Lancet. 2003;361:1761–1766. doi: 10.1016/S0140-6736(03)13410-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Riley S, Fraster C, Donnelly C A, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300:1961–1966. doi: 10.1126/science.1086478. [DOI] [PubMed] [Google Scholar]
- 7.Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:1966–1970. doi: 10.1126/science.1086616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Dye C, Gay N. Modelling the SARS epidemic. Science. 2003;300:1884–1885. doi: 10.1126/science.1086925. [DOI] [PubMed] [Google Scholar]
- 9.Jia N, Tsui L. Epidemic modelling using Sars as a case study. N Am Actuarial J. 2005;9:28–42. doi: 10.1080/10920277.2005.10596223. [DOI] [Google Scholar]
- 10.Watts D J, Muhamad R, Medina D C, et al. Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc Natl Acad Sci. 2005;102:11157–11162. doi: 10.1073/pnas.0501226102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Zhang Z B. The outbreak pattern of SARS cases in China as revealed by a mathematical model. Ecol Model. 2007;204:420–426. doi: 10.1016/j.ecolmodel.2007.01.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kenah E, Robins J M. Second look at the spread of epidemics on networks. Phys Rev E. 2007;76:036113. doi: 10.1103/PhysRevE.76.036113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Bian L, Liebner D. A network model for dispersion of communicable diseases. Trans GIS. 2007;11:155–173. doi: 10.1111/j.1467-9671.2007.01039.x. [DOI] [Google Scholar]
- 14.Yu X L, Wang X Y, Zhang D M, et al. Mathematical expressions for epidemics and immunization in small-world networks. Physica A. 2008;387:1421–1430. doi: 10.1016/j.physa.2007.08.060. [DOI] [Google Scholar]
- 15.Dybiec B. SIR model of epidemic spread w ith accumulated exposure. The Eur Phys J B. 2009;67:377–383. doi: 10.1140/epjb/e2008-00435-y. [DOI] [Google Scholar]
- 16.Dybiec B, Kleczkowski A, Gilligan C A. Modelling control of epidemics spreading by long-range interactions. J R Soc Interface. 2009;6:941–950. doi: 10.1098/rsif.2008.0468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Anderson R M, May R M. Infectious Diseases of Humans. Oxford: Oxford University Press; 1991. [Google Scholar]
- 18.Mollison D. Epidemic Models. Cambridge: Cambridge University Press; 1995. [Google Scholar]
- 19.Edelstein-Keshet L. Mathematical Models in Biology. New York: Random House; 1988. [Google Scholar]
- 20.Wu Z N. Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall. Probabilist Eng Mech. 2003;18:241–249. doi: 10.1016/S0266-8920(03)00028-6. [DOI] [Google Scholar]
- 21.Brauer F, Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. New York: Springer; 2001. [Google Scholar]
- 22.Ahmed E, Agiza H N. On modeling epidemics, including latency, incubation and variable susceptibility. Physica A. 1998;253:347–352. doi: 10.1016/S0378-4371(97)00665-1. [DOI] [Google Scholar]
- 23.Greenhalgh D, Das P. Modeling epidemics with variable contact rates. Theor Population Biology. 1995;47:129–179. doi: 10.1006/tpbi.1995.1006. [DOI] [PubMed] [Google Scholar]
- 24.Weber A, Weber M, Milligan P. Modelling epidemics caused by respiratory syncytial virus. Mathematical Biosciences. 2001;172:99–113. doi: 10.1016/S0025-5564(01)00066-9. [DOI] [PubMed] [Google Scholar]
- 25.Pybus O G, Charleston M A, Gupta S, et al. The epidemic behavior of the hepatitis C virus. Science. 2001;292:2323–2325. doi: 10.1126/science.1058321. [DOI] [PubMed] [Google Scholar]
- 26.Anderson J D. Hypersonic and High Temperature Gas Dynamics. Virginia: AIAA Education Series; 2006. [Google Scholar]
- 27.Ziegler H. An Introduction to Thermomechanics. Amsterdam: North-Holland Publisher; 1983. [Google Scholar]
- 28.Gao R B, Cao B, Hu Y W, et al. Human infection with a novel avianorigin influenza a (H7N9) virus. N Eng J Med. 2013;368:1888–1897. doi: 10.1056/NEJMoa1304459. [DOI] [PubMed] [Google Scholar]
- 29.Wen Y M, Klenk H D. H7N9 avian influenza virus — search and research. Emerging Microbes Infections. 2013;2:e18. doi: 10.1038/emi.2013.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.She Z S. A New Framework for Complex System. Beijing: Science Presss; 2012. [Google Scholar]
