The content is available as a PDF (438.4 KB).
References
- Ashwell G., Morell A.G. The role of carbohydrate in the hepatic recognition of circulating glycoproteins. Adv. Enzym. 1974;41:99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. A. Rev. Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
- Bayard B., Kerckaert J.P. Uniformity of carbohydrate chains within molecular variants of rat α1-fetoprotein with distinct affinity for Concanavalin A. Eur. J. Biochem. 1981;113:405–414. doi: 10.1111/j.1432-1033.1981.tb05080.x. [DOI] [PubMed] [Google Scholar]
- Bayard B., Kerckaert J.P., Laine A., Hayem A. Uniformity of glycans within molecular variants of α1protease inhibitor with distinct affinity for Concanavalin A. Eur. J. Biochem. 1982;124:371–376. doi: 10.1111/j.1432-1033.1982.tb06602.x. [DOI] [PubMed] [Google Scholar]
- Berger E.G., Buddecke E., Kamerling J.P., Kobata A., Paulson J.C., Vliegenthart J.F.G. Structure, biosynthesis and function of glycoprotein glycans. Experientia. 1982;38:1129–1162. doi: 10.1007/BF01959725. [DOI] [PubMed] [Google Scholar]
- Carayon P., Amr S., Nisula B. A competitive antagonist of thyrotropin: asialo-choriogonadotropin. Biochem. biophys. Res. Commun. 1980;97:69–74. doi: 10.1016/s0006-291x(80)80135-5. [DOI] [PubMed] [Google Scholar]
- Fournet B., Montreuil J., Strecker G., Dorland L., Haverkamp J., Vliegenthart J.F.G., Binette J.P., Schmid K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma α1-acid glycoprotein by 360-MHz 1H NMR spectroscopy and permethylation analysis. Biochemistry. 1978;17:5206–5214. doi: 10.1021/bi00617a021. [DOI] [PubMed] [Google Scholar]
- Hatton M.W.C., März L., Berry L.R., Debanne M.T., Regoeczi E. Bi- and triantennary human transferrin glycopeptides and their affinities for the hepatic lectin specific for asialo-glycoproteins. Biochem. J. 1979;181:633–638. doi: 10.1042/bj1810633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatton M.W.C., März L., Regoeczi E. On the significance of heterogeneity of plasma glycoproteins possessing. N-glycans of the complex type: a perspective. Trends Biochem. Sci. 1983;8:287–291. [Google Scholar]
- Hemming F.W. Control and manipulation of the phosphodolichol pathway of protein N-glycosylation. Biosci. Rep. 1982;2:203–221. doi: 10.1007/BF01136719. [DOI] [PubMed] [Google Scholar]
- Hercz A., Harpaz N. Characterization of the oligosaccharides of liver Z variant α1-antitrypsin. Can. J. Biochem. 1980;58:644–648. doi: 10.1139/o80-089. [DOI] [PubMed] [Google Scholar]
- Ishihara H., Tejima S. Structure and location of asparagine-linked oligosaccharides in the Fc region of a human immunoglobulin D. Biochem. biophys. Res. Commun. 1983;110:181–186. doi: 10.1016/0006-291x(83)91277-9. [DOI] [PubMed] [Google Scholar]
- Kaplan A., Achord D.T., Sly W.S. Vol. 74. 1977. Phosphohexosyl components of lysosomal enzyme are recognized by pinocytosis receptors of human fibroblasts; pp. 2026–2038. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerckaert J.P., Bayard B. Glycan uniformity within molecular variants of transferrin with distinct affinity for Concanavalin A. Biochem. biophys. Res. Commun. 1982;105:1023–1030. doi: 10.1016/0006-291x(82)91072-5. [DOI] [PubMed] [Google Scholar]
- Manjunath P., Sairam M.R. Biochemical, biological, and immunological properties of chemically deglycosylated human choriogonadotropin. J. biol. Chem. 1982;257:7109–7115. [PubMed] [Google Scholar]
- Marshall R.D. Glycoproteins. A. Rev. Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
- März L., Hatton M.W.C., Berry L.R., Regoeczi E. The structural heterogeneity of the carbohydrate moiety of desialylated human transferrin. Can. J. Biochem. 1982;60:624–630. doi: 10.1139/o82-077. [DOI] [PubMed] [Google Scholar]
- Miller M.S., Bruch R.C., White H.B. Carbohydrate compositional effects on tissue distribution of chicken riboflavin-binding protein. Biochim. biophys. Ada. 1982;715:126–136. doi: 10.1016/0304-4165(82)90058-7. [DOI] [PubMed] [Google Scholar]
- Montreuil J. Primary structure of glycoprotein glycans. Adv. Carbohydr. chem. Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
- Moyle W.R., Bahl O.P., März L. Role of the carbohydrate of human chorionic gonadotropin in the mechanism of hormone action. J. biol. Chem. 1975;250:9163–9169. [PubMed] [Google Scholar]
- Prieels J.-P., Pizzo S.V., Glasgow L.R., Paulson J.C., Hill R.L. Vol. 75. 1978. Hepatic receptor that specifically binds oligosaccharides containing fucose α 1–3 N-acetylglucosamine linkages; pp. 2215–2219. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rauvala H., Carter W.G., Hakomori S.-I. Studies on cell adhesion and recognition. J. Cell Biol. 1981;88:127–137. doi: 10.1083/jcb.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]; Rauvala H., Carter W.G., Hakomori S.-I. Studies on cell adhesion and recognition. J. Cell Biol. 1981;88:138–148. doi: 10.1083/jcb.88.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]; Rauvala H., Carter W.G., Hakomori S.-I. Studies on cell adhesion and recognition. J. Cell Biol. 1981;88:149–159. doi: 10.1083/jcb.88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regoeczi E., Hatton M.W.C., Charlwood P.A. Carbohydrate-mediated elimination of avian plasma glycoprotein in mammals. Nature. 1975;254:699–701. doi: 10.1038/254699a0. [DOI] [PubMed] [Google Scholar]
- Regoeczi E., Chindemi P.A., Hatton M.W.C., Berry L.R. Galactose-specific elimination of human asialotransferrin by the bone marrow in the rabbit. Archs Biochem. Biophys. 1980;205:76–84. doi: 10.1016/0003-9861(80)90085-5. [DOI] [PubMed] [Google Scholar]
- Schmid K., Burke J.F., Debray-Sachs M., Tokita K. Sialic acid-deficient α1-acid glycoprotein produced in certain pathological stages. Nature. 1964;204:75–76. doi: 10.1038/204075a0. [DOI] [PubMed] [Google Scholar]
- Spik G., Bayard B., Fournet B., Strecker G., Bouquelet S., Montreuil J. Studies on glycoconjugates: LXIV. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett. 1975;50:296–299. doi: 10.1016/0014-5793(75)80513-8. [DOI] [PubMed] [Google Scholar]
- Spik G. (1982) Personal communication.
- Spiro R.G. Glycoproteins. Adv. Protein Chem. 1973;27:349–467. doi: 10.1016/s0065-3233(08)60451-9. [DOI] [PubMed] [Google Scholar]
- Stahl P., Rodman J.S., Miller J.S., Schlesinger P.H. Vol. 75. 1978. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates and lysosomal glycosidases by alveolar macrophages; pp. 1399–1403. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D.F., Sefton B.M. Coronavirus protein: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoprotein. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stibler H., Borg S., Allgullander C. Clinical significance of transferrin in relation to alcohol consumption. Acta med. scand. 1979;206:275–282. doi: 10.1111/j.0954-6820.1979.tb13510.x. [DOI] [PubMed] [Google Scholar]
- Yen P.H., Ballou C.E. Composition of a specific intercellular aggregation factor. J. biol. Chem. 1973;248:8316–8318. [PubMed] [Google Scholar]
