Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2013;8126:112–125. doi: 10.1007/978-3-642-40453-5_10

Distribution of Graph-Distances in Boltzmann Ensembles of RNA Secondary Structures

Rolf Backofen 21,22, Markus Fricke 23, Manja Marz 23, Jing Qin 24, Peter F Stadler 24,25,26,27,28
Editors: Aaron Darling19, Jens Stoye20
PMCID: PMC7114971

Abstract

Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n 11). Although we were able to reduce this to O(n 6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.

Keywords: Secondary Structure, Partition Function, Graph Distance, Inside Path, Boltzmann Ensemble

Contributor Information

Aaron Darling, Email: aaron.darling@uts.edu.au.

Jens Stoye, Email: jens.stoye@uni-bielefeld.de.

References

  • 1.Baraniak A.P., Lasda E.L., Wagner E.J., Garcia-Blanco M.A. A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements. Mol. Cell Biol. 2003;23:9327–9337. doi: 10.1128/MCB.23.24.9327-9337.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Clote P., Ponty Y., Steyaert J.M. Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 2012;65:581–599. doi: 10.1007/s00285-011-0467-8. [DOI] [PubMed] [Google Scholar]
  • 3.Darty K., Denise A. Ponty. Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25(15):1974–1975. doi: 10.1093/bioinformatics/btp250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Das R., Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl. Acad. Sci. USA. 2007;104:14664–14669. doi: 10.1073/pnas.0703836104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ding Y., Lawrence C.E. A statistical sampling algorithm for RNA secondary structure prediction. Nucl. Acids Res. 2003;31(24):7280–7301. doi: 10.1093/nar/gkg938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dufour D., Mateos-Gomez P.A., Enjuanes L., Gallego J., Sola I. Structure and functional relevance of a transcription-regulating sequence involved in coronavirus discontinuous RNA synthesis. J. Virol. 2011;85(10):4963–4973. doi: 10.1128/JVI.02317-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Einert T.R., Näger P., Orland H., Netz R. Impact of loop statistics on the thermodynamics of RNA folding. Phys. Rev. Lett. 2008;101:48103. doi: 10.1103/PhysRevLett.101.048103. [DOI] [PubMed] [Google Scholar]
  • 8.Fang L.T. The end-to-end distance of RNA as a randomly self-paired polymer. J. Theor. Biol. 2011;280:101–107. doi: 10.1016/j.jtbi.2011.04.010. [DOI] [PubMed] [Google Scholar]
  • 9.Forties R.A., Bundschuh R. Modeling the interplay of single-stranded binding proteins and nucleic acid secondary structure. Bioinformatics. 2010;26:61–67. doi: 10.1093/bioinformatics/btp627. [DOI] [PubMed] [Google Scholar]
  • 10.Gerland U., Bundschuh R., Hwa T. Force-induced denaturation of RNA. Biophys. J. 2001;81:1324–1332. doi: 10.1016/S0006-3495(01)75789-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gerland U., Bundschuh R., Hwa T. Translocation of structured polynucleotides through nanopores. Phys. Biol. 2004;1:19–26. doi: 10.1088/1478-3967/1/1/002. [DOI] [PubMed] [Google Scholar]
  • 12.Giegerich R., Meyer C. Algebraic dynamic programming. In: Kirchner H., Ringeissen C., editors. Algebraic Methodology and Software Technology; Heidelberg: Springer; 2002. pp. 349–364. [Google Scholar]
  • 13.Han H.S., Reidys C.M. The 5’-3’ distance of RNA secondary structures. J. Comput. Biol. 2012;19:867–878. doi: 10.1089/cmb.2011.0301. [DOI] [PubMed] [Google Scholar]
  • 14.Kobitski A., Nierth A., Helm M., Jaschke A., Nienhaus U.G. Mg2+-dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis. Nucleic Acids Res. 2007;35(6):2047–2059. doi: 10.1093/nar/gkm072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Leipply D., Lambert D., Draper D.E. Ion-RNA interactions thermodynamic analysis of the effects of mono- and divalent ions on RNA conformational equilibria. Methods Enzymol. 2009;469:433–463. doi: 10.1016/S0076-6879(09)69021-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Li A.X., Marz M., Qin J., Reidys C.M. RNA-RNA interaction prediction based on multiple sequence alignments. Bioinformatics. 2011;27(4):456–463. doi: 10.1093/bioinformatics/btq659. [DOI] [PubMed] [Google Scholar]
  • 17.Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Alg. Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lorenz R., Bernhart S.H., Qin J., Honer zu Siederdissen C., Tanzer A., Amman F., Hofacker I.L. 2d meets 4g: G-quadruplexes in rna secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2013;99(PrePrints):1. doi: 10.1109/TCBB.2013.7. [DOI] [PubMed] [Google Scholar]
  • 19.Mathews D., Sabina J., Zuker M., Turner D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 1999;288:911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  • 20.Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA. 2004;101:7287–7292. doi: 10.1073/pnas.0401799101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.McCaskill J.S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers. 1990;29(6-7):1105–1119. doi: 10.1002/bip.360290621. [DOI] [PubMed] [Google Scholar]
  • 22.McManus C.J., Graveley B.R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 2011;21:373–379. doi: 10.1016/j.gde.2011.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Müller M., Krzakala F., Mézard M. The secondary structure of RNA under tension. Eur. Phys. J. E. 2002;9:67–77. doi: 10.1140/epje/i2002-10057-5. [DOI] [PubMed] [Google Scholar]
  • 24.Reidys C.M., Huang F.W.D., Andersen J.E., Penner R.C., Stadler P.F., Nebel M.E. Topology and prediction of RNA pseudoknots. Bioinformatics. 2011;27(8):1076–1085. doi: 10.1093/bioinformatics/btr090. [DOI] [PubMed] [Google Scholar]
  • 25.Roy R., Hohng S., Ha T. A practical guide to single-molecule FRET. Nature Methods. 2008;5:507–516. doi: 10.1038/nmeth.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Schuster P., Fontana W., Stadler P.F., Hofacker I.L. From sequences to shapes and back: a case study in RNA secondary structures. Proc. Royal Society London B. 1994;255(1344):279–284. doi: 10.1098/rspb.1994.0040. [DOI] [PubMed] [Google Scholar]
  • 27.Senter, E., Sheikh, S., Dotu, I., Ponty, Y., Clote, P.: Using the Fast Fourier Transform to Accelerate the Computational Search for RNA Conformational Switches. PLoS ONE 7(12), e50506 (2012) [DOI] [PMC free article] [PubMed]
  • 28.Yoffe A.M., Prinsen P., Gelbart W.M., Ben-Shaul A. The ends of a large RNA molecule are necessarily close. Nucl. Acids Res. 2011;39:292–299. doi: 10.1093/nar/gkq642. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Algorithms in Bioinformatics are provided here courtesy of Nature Publishing Group

RESOURCES