Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009:3–35. doi: 10.1007/978-1-84882-285-6_1

Avida

A Software Platform for Research in Computational Evolutionary Biology

Charles Ofria 3, David M Bryson 3, Claus O Wilke 4
Editors: Maciej Komosinski1, Andrew Adamatzky2
PMCID: PMC7115006

Abstract

Avida1 is a software platform for experiments with self-replicating and evolving computer programs. It provides detailed control over experimental settings and protocols, a large array of measurement tools, and sophisticated methods to analyze and post-process experimental data. This chapter explains the general principles on which Avida is built, its main components and their interactions, and gives an overview of some prior research.

Keywords: Virtual Machine, Test Environment, Replication Rate, Central Processing Unit, High Mutation Rate

Contributor Information

Maciej Komosinski, Email: maciej.komosinski@cs.put.poznan.pl.

Andrew Adamatzky, Email: andrew.adamatzky@uwe.ac.uk.

Charles Ofria, Email: ofria@msu.edu.

David M. Bryson, Email: brysonda@egr.msu.edu

Claus O. Wilke, Email: cwilke@mail.utexas.edu

References

  • 1.Avida packages. URL http://sourceforge.net/projects/avida
  • 2.Avida project. URL http://avida.devosoft.org
  • 3.Adami C. Digital genetics: unravelling the genetic basis of evolution. Nature Reviews Genetics. 2006;7(2):109–118. doi: 10.1038/nrg1771. [DOI] [PubMed] [Google Scholar]
  • 4.Adami C., Brown C.T., Haggerty M.R. Abundance-distributions in artificial life and stochastic models: Age and area revisited. In: Morán F., Moreno A., Morelo J.J., Chacón P., editors. Proceedings of the Third European Conference on Advances in Artificial Life, Lecture Notes in Computer Science. London, UK: Springer-Verlag; 1995. pp. 503–514. [Google Scholar]
  • 5.Adami C., Ofria C., Collier T.C. Evolution of biological complexity. Proceedings of the National Academy of Sciences. 2000;97:4463–4468. doi: 10.1073/pnas.97.9.4463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Barton N., Zuidema W. Evolution: the erratic path towards complexity. Current Biology. 2003;13(16):R649–R651. doi: 10.1016/S0960-9822(03)00573-6. [DOI] [PubMed] [Google Scholar]
  • 7.Chow S.S., Wilke C.O., Ofria C., Lenski R.E., Adami C. Adaptive radiation from resource competition in digital organisms. Science. 2004;305(5680):84–86. doi: 10.1126/science.1096307. [DOI] [PubMed] [Google Scholar]
  • 8.Chu J., Adami C. Propagation of information in populations of self-replicating code. In: Langton C.G., Shimohara T., editors. Artificial Life V: Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems. Cambridge, MA: International Society of Artificial Life, MIT Press; 1997. pp. 462–469. [Google Scholar]
  • 9.Comas I., Moya A., Gonzalez-Candelas F. Validating viral quasispecies with digital organisms: A re-examination of the critical mutation rate. BMC Evolutionary Biology. 2005;5(1):5. doi: 10.1186/1471-2148-5-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cooper T.F., Ofria C. Evolution of stable ecosystems in populations of digital organisms. In: Standish R.K., Bedau M.A., Abbass H.A., editors. Artificial Life VIII: Proceedings of the Eighth International Conference on Artificial life. Cambridge, MA: International Society of Artificial Life, MIT Press; 2003. pp. 227–232. [Google Scholar]
  • 11.Darwin C. On the Origin of Species by Means of Natural Selection. London: Murray; 1859. [Google Scholar]
  • 12.Dawkins R. The Blind Watchmaker. 2. New York: W. W. Norton & Company; 1996. [Google Scholar]
  • 13.Dennett D.C. The new replicators. In: Pagel M., editor. Encyclopedia of Evolution. Oxford: Oxford University Press; 2002. [Google Scholar]
  • 14.Dewdney A.K. In a game called core war hostile programs engage in a battle of bits. Scientific American. 1984;250(5):14–22. doi: 10.1038/scientificamerican0584-14. [DOI] [Google Scholar]
  • 15.Domingo E., Bibricher C.K., Eigen M., Holland J.J. Quasispecies and RNA Virus Evolution: Priciples and Consequences. Georgetown, TX: Landes Bioscience; 2001. [Google Scholar]
  • 16.Drake J.W., Holland J.J. Mutation rates among rna viruses. Proceedings of the National Academy of Sciences. 1999;96(24):13,910–13,913. doi: 10.1073/pnas.96.24.13910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Egri-Nagy A., Nehaniv C.L. Proceedings of the 7th European Conferance on Artificial Life, Lecture Notes in Computer Science. Berlin: Springer; 2003. Evolvability of the genotype-phenotype relation in populations of self-replicating digital organisms in a tierra-like system; pp. 238–247. [Google Scholar]
  • 18.Elena S.F., Lenski R.E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews Genetics. 2003;4(6):457–469. doi: 10.1038/nrg1088. [DOI] [PubMed] [Google Scholar]
  • 19.Gerlee P., Lundh T. Proceedings of the 8th European Conference on Artificial Life, Lecture Notes in Computer Science. Berlin: Springer; 2005. The genetic coding style of digital organisms; pp. 854–863. [Google Scholar]
  • 20.Goldberg D.E. The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Boston: Kluwer Academic Publishers; 2002. [Google Scholar]
  • 21.Hartl D.L., Clark A.G. Principles of Population Genetics. Sunderland, MA: Sinauer Associates; 2006. [Google Scholar]
  • 22.Kim Y., Stephan W. Selective sweeps in the presence of interference among partially linked loci. Genetics. 2003;164(1):389–398. doi: 10.1093/genetics/164.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Koza J.R. Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Norwell, MA: Kluwer Academic Publishers; 2003. [Google Scholar]
  • 24.Lenski R., Ofria C, Pennock R.T., Adami C. The evolutionary origin of complex features. Nature. 2003;423:139–144. doi: 10.1038/nature01568. [DOI] [PubMed] [Google Scholar]
  • 25.Lenski R.E. Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium, Escherichia coli. Plant Breeding Reviews. 2004;24:225–265. [Google Scholar]
  • 26.Lenski R.E., Ofria C, Collier T.C., Adami C. Genome complexity, robustness and genetic interactions in digital organisms. Nature. 1999;400(6745):661–664. doi: 10.1038/23245. [DOI] [PubMed] [Google Scholar]
  • 27.Maynard Smith J. Byte-sized evolution. Nature. 1992;355:772–773. doi: 10.1038/355772a0. [DOI] [PubMed] [Google Scholar]
  • 28.McVean G.A.T., Charlesworth B. The effects of hill-robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000;155(2):929–944. doi: 10.1093/genetics/155.2.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Misevic D., Ofria C, Lenski R.E. Sexual reproduction shapes the genetic architecture of digital organisms. Proceedings of the Royal Society of London: Biological Sciences. 2006;273:457–464. doi: 10.1098/rspb.2005.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Morin P.J. Biodiversity's ups and downs. Nature. 2000;406(6795):463–464. doi: 10.1038/35020160. [DOI] [PubMed] [Google Scholar]
  • 31.Newcomb R.D., Campbell P.M., Ollis D.L., Cheah E., Russell R.J., Oakeshott J.G. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences. 1997;94(14):7464–7468. doi: 10.1073/pnas.94.14.7464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Nilsson D.E., Pelger S. A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London: Biological Sciences. 1994;256(1345):53–58. doi: 10.1098/rspb.1994.0048. [DOI] [PubMed] [Google Scholar]
  • 33.Notley-McRobb L., Ferenci T. Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environmental Microbiology. 1999;1(1):33–43. doi: 10.1046/j.1462-2920.1999.00002.x. [DOI] [PubMed] [Google Scholar]
  • 34.Notley-McRobb L., Ferenci T. The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environmental Microbiology. 1999;1(1):45–52. doi: 10.1046/j.1462-2920.1999.00003.x. [DOI] [PubMed] [Google Scholar]
  • 35.Nowak M.A. Evolutionary Dynamics: Exploring the Equations of Life. Cambridge, MA: Belknap Press of Harvard University Press; 2006. [Google Scholar]
  • 36.Ofria C., Adami C., Collier T. Design of evolvable computer languages. IEEE Transactions on Evolutionary Computation. 2002;6(4):420–424. doi: 10.1109/TEVC.2002.802442. [DOI] [Google Scholar]
  • 37.Ofria C., Bryson D.M., Baer B., Nanlohy K.G., Lenski R.E., Adami C. The Avida User's Guide. East Lansing, MI: Michigan State University; 2008. [Google Scholar]
  • 38.Ofria C., Wilke C. Avida: A software platform for research in computational evolutionary biology. Artificial Life. 2004;10:191–229. doi: 10.1162/106454604773563612. [DOI] [PubMed] [Google Scholar]
  • 39.O'Neill B. Digital evolution. PLoS Biology. 2003;1(1):011–014. doi: 10.1371/journal.pbio.0000018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Orr H.A. The rate of adaptation in asexuals. Genetics. 2000;155(2):961–968. doi: 10.1093/genetics/155.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Pennock, R.T.: Avida-ED website. URL http://avida-ed.msu.edu/
  • 42.Rainey P.B., Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394:69–72. doi: 10.1038/27900. [DOI] [PubMed] [Google Scholar]
  • 43.Rasmussen S., Knudsen C., Feldberg P., Hindsholm M. The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D. 1990;42(1–3):111–134. doi: 10.1016/0167-2789(90)90070-6. [DOI] [Google Scholar]
  • 44.Ray T.S. An approach to the synthesis of life. In: Langton C.G., Taylor C., Farmer J.D., Rasmussen S., editors. Artificial Life II. Redwood City, CA: Addison-Wesley; 1991. pp. 371–408. [Google Scholar]
  • 45.Schluter D. Ecological causes of adaptive radiation. American Naturalist. 1996;148:S40–S64. doi: 10.1086/285901. [DOI] [Google Scholar]
  • 46.Schluter D. Ecology and the origin of species. Trends in Ecology & Evolution. 2001;16(7):372–380. doi: 10.1016/S0169-5347(01)02198-X. [DOI] [PubMed] [Google Scholar]
  • 47.Tilman D. Resource Competition and Community Structure. Princeton, NJ: Princeton University Press; 1982. [PubMed] [Google Scholar]
  • 48.Tilman D. Causes, consequences and ethics of biodiversity. Nature. 2000;405(6783):208–211. doi: 10.1038/35012217. [DOI] [PubMed] [Google Scholar]
  • 49.Travisano M., Rainey P.B. Studies of adaptive radiation using model microbial systems. The American Naturalist. 2000;156:S35–S44. doi: 10.1086/303414. [DOI] [PubMed] [Google Scholar]
  • 50.Wilke C.O. Maternal effects in molecular evolution. Physical Review Letters. 2002;88(7):078. doi: 10.1103/PhysRevLett.88.078101. [DOI] [PubMed] [Google Scholar]
  • 51.Wilke C.O., Adami C. The biology of digital organisms. Trends in Ecology & Evolution. 2002;17(11):528–532. doi: 10.1016/S0169-5347(02)02612-5. [DOI] [Google Scholar]
  • 52.Wilke C.O., Adami C. Evolution of mutational robustness. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003;522(1–2):3–11. doi: 10.1016/S0027-5107(02)00307-X. [DOI] [PubMed] [Google Scholar]
  • 53.Wilke C.O., Wang J.L., Ofria C., Lenski R.E., Adami C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature. 2001;412(6844):331–333. doi: 10.1038/35085569. [DOI] [PubMed] [Google Scholar]
  • 54.Wilkins A.S. The Evolution of Developmental Pathways. Sun-derland, MA: Sinauer Associates; 2002. [Google Scholar]
  • 55.Yedid G., Bell G. Microevolution in an electronic microcosm. The American Naturalist. 2001;157(5):465–487. doi: 10.1086/319928. [DOI] [PubMed] [Google Scholar]
  • 56.Yedid G., Bell G. Macroevolution simulated with autonomously replicating computer programs. Nature. 2002;420(6917):810–812. doi: 10.1038/nature01151. [DOI] [PubMed] [Google Scholar]
  • 57.Zhang, H., Travisano, M.: Predicting fitness effects of beneficial mutations in digital organisms. Artificial Life, 2007. ALIFE ′07. IEEE Symposium on pp. 39–46 (2007). DOI 10.1109/ALIFE.2007.367656

Articles from Artificial Life Models in Software are provided here courtesy of Nature Publishing Group

RESOURCES