Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009:3–63. doi: 10.1007/978-90-481-2298-1_1

Pharmacogenomic Biomarkers in Neuropsychiatry: The Path to Personalized Medicine in Mental Disorders

Ramón Cacabelos 3
Editor: Michael S Ritsner1,10
PMCID: PMC7115027

Abstract

Neuropsychiatric disorders and dementia represent a major cause of disability and high cost in developed societies. Most disorders of the central nervous system (CNS) share some common features, such as a genomic background in which hundreds of genes might be involved, genome-environment interactions, complex pathogenic pathways, poor therapeutic outcomes, and chronic disability.

Recent advances in genomic medicine can contribute to accelerate our understanding on the pathogenesis of CNS disorders, improve diagnostic accuracy with the introduction of novel biomarkers, and personalize therapeutics with the incorporation of pharmacogenetic and pharmacogenomic procedures to drug development and clinical practice.

The pharmacological treatment of CNS disorders, in general, accounts for 10–20% of direct costs, and less than 30–40% of the patients are moderate responders to conventional drugs, some of which may cause important adverse drugs reactions (ADRs). Pharmacogenetic and pharmacogenomic factors may account for 60–90% of drug variability in drug disposition and pharmacodynamics. Approximately 60–80% of CNS drugs are metabolized via enzymes of the CYP gene superfamily; 18% of neuroleptics are major substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are major substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are major substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of

CYP3A4. About 10–20% of Caucasians are carriers of defective CYP2D6 polymorphic variants that alter the metabolism of many psychotropic agents. Other 100 genes participate in the efficacy and safety of psychotropic drugs. The incorporation of pharmacogenetic/ pharmacogenomic protocols to CNS research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety. To achieve this goal several measures have to be taken, including: (a) educate physicians and the public on the use of genetic/ genomic screening in the daily clinical practice; (b) standardize genetic testing for major categories of drugs; (c) validate pharmacogenetic and pharmacogenomic procedures according to drug category and pathology; (d) regulate ethical, social, and economic issues; and (e) incorporate pharmacogenetic and pharmacogenomic procedures to both drugs in development and drugs in the market to optimize therapeutics.

Keywords: CNS disorders, neuropsychiatric disease, schizophrenia, depression, dementia, Alzheimer's disease, APOE, CYPs, biomarkers, genomic medicine, pharmacogenetics, pharmacogenomics

References

  • 1.Andlin-Sobocki P, Jönsson B, Wittchen H-U, Olesen J. Costs of disorders of the brain in Europe. Executive summary. Eur J Neurol. 2005;12(1):x–xi. doi: 10.1111/j.1468-1331.2005.01223.x. [DOI] [PubMed] [Google Scholar]
  • 2.Cacabelos R. A conceptual introduction to geriatric neuroscience. Psychogeriatrics. 2001;1:158–188. doi: 10.1111/j.1479-8301.2001.tb00046.x. [DOI] [Google Scholar]
  • 3.Loveman E, Green C, Kirby J, et al. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer's disease. Health Technol Assess. 2006;10:1–176. doi: 10.3310/hta10010. [DOI] [PubMed] [Google Scholar]
  • 4.Cacabelos R, Alvarez XA, Lombardi V, et al. Pharmacological treatment of Alzheimer disease: from phychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today. 2000;36:415–499. [PubMed] [Google Scholar]
  • 5.Cacabelos R. Pharmacogenomics in Alzheimer's disease. Min Rev Med Chem. 2002;2:59–84. doi: 10.2174/1389557023406458. [DOI] [PubMed] [Google Scholar]
  • 6.Cacabelos R. Pharmacogenomics for the treatment of dementia. Ann Med. 2002;34:357–379. doi: 10.1080/078538902320772115. [DOI] [PubMed] [Google Scholar]
  • 7.Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet. 2004;5:645–656. doi: 10.1038/nrg1432. [DOI] [PubMed] [Google Scholar]
  • 8.Cacabelos R. Molecular genetics of Alzheimer's disease and aging. Meth Find Exper Clin Pharmacol. 2005;27(A):1–573. [PubMed] [Google Scholar]
  • 9.Kato T. Molecular genetics of bipolar disorder and depression. Psychiatr Clin Neurosci. 2007;61:3–19. doi: 10.1111/j.1440-1819.2007.01604.x. [DOI] [PubMed] [Google Scholar]
  • 10.www.ncbi.nlm.nih.gov/OMIM
  • 11.Hu D, Ziv E. Confounding in genetic association studies and its solutions. Meth Mol Biol. 2008;448:31–39. doi: 10.1007/978-1-59745-205-2_3. [DOI] [PubMed] [Google Scholar]
  • 12.Berry N, Jobanputra V, Pal H. Molecular genetics of schizophrenia: a critical review. J Psychiatr Neurosci. 2003;28:415–429. [PMC free article] [PubMed] [Google Scholar]
  • 13.www.molgen.ua.ac.be/ADMutations/
  • 14.Wright AF, Jaconson SG, Cideciyan AV, et al. Lifespan and mitochondrial control of neurodegeneration. Nature Genet. 2004;36:1153–1158. doi: 10.1038/ng1448. [DOI] [PubMed] [Google Scholar]
  • 15.Lin MT, Simon DK, Ahn CH, et al. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet. 2002;11:133–145. doi: 10.1093/hmg/11.2.133. [DOI] [PubMed] [Google Scholar]
  • 16.Cacabelos R. The application of functional genomics to Alzheimer's disease. Pharmacogenomics. 2003;4:597–621. doi: 10.1517/phgs.4.5.597.23795. [DOI] [PubMed] [Google Scholar]
  • 17.Cacabelos R. Pharmacogenomics and therapeutic prospects in Alzheimer's disease. Exp Opin Pharmacother. 2005;6:1967–1987. doi: 10.1517/14656566.6.12.1967. [DOI] [PubMed] [Google Scholar]
  • 18.Cacabelos R. Pharmacogenomics, nutrigenomics and therapeutic optimization in Alzheimer's disease. Aging Health. 2005;1:303–348. doi: 10.2217/1745509X.1.2.303. [DOI] [Google Scholar]
  • 19.Cacabelos R, Takeda M. Pharmacogenomics, nutrigenomics and future therapeutics in Alzheimer's disease. Drugs Future. 2006;31(B):5–146. [Google Scholar]
  • 20.Cacabelos R. Pharmacogenomics in Alzheimer's disease. Meth Mol Biol. 2008;448:213–357. doi: 10.1007/978-1-59745-205-2_10. [DOI] [PubMed] [Google Scholar]
  • 21.Cacabelos R, Fernández-Novoa L, Lombardi V, et al. Cerebrovascular risk factors in Alzheimer's disease: brain hemodynamics and pharmacogenomic implications. Neurol Res. 2003;25:567–580. doi: 10.1179/016164103101202002. [DOI] [PubMed] [Google Scholar]
  • 22.Cacabelos R, Fernández-Novoa L, Corzo L, et al. Phenotypic profiles and functional genomics in dementia with a vascular component. Neurol Res. 2004;26:459–480. doi: 10.1179/016164104225017677. [DOI] [PubMed] [Google Scholar]
  • 23.Anderson CNG, Grant SGN. High throughput protein expression screening in the nervous system — needs and limitations. J Physiol. 2006;575.2:367–372. doi: 10.1113/jphysiol.2006.113795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Xu X, Zhan M, Duan W, et al. Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol. 2007;8:R234. doi: 10.1186/gb-2007-8-11-r234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sogaard M, Tümer Z, Hjalgrim H, et al. Subtelomeric study of 132 patients with mental retardation reveals 9 chromosomal anomalies and contributes to the delineation of submicroscopic deletions of 1pter, 2qter, 4pter, 5qter and 9qter. BMC Med Genet. 2005;6:21. doi: 10.1186/1471-2350-6-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Buttner N, Bhattacharyya S, Walsh J, Benes FM. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res. 2007;93:33–41. doi: 10.1016/j.schres.2007.01.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Newrzella D, Pahlavan PS, Krüger C, et al. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia. BMC Genomics. 2007;8:370. doi: 10.1186/1471-2164-8-370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Matigian NA, McCurdy RD, Féron F, et al. Fibroblast and lymphoblast gene expression profiles in schizophrenia : are non-neural cells informative? PLoS ONE. 2008;3:e2412. doi: 10.1371/journal.pone.0002412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lencz T, Lambert C, DeRosse P, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA. 2007;104:19942–19947. doi: 10.1073/pnas.0710021104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lehrmann E, Hyde TM, Vawter MP, et al. The use of microarrays to characterize neuropsychiatric disorders: post-mortem studies of substance abuse and schizophrenia. Curr Mol Med. 2003;3:437–446. doi: 10.2174/1566524033479690. [DOI] [PubMed] [Google Scholar]
  • 31.Vernes SC, Spiteri E, Nicod J, et al. High-throughput analysis of promoter occupancy reveals direct neuronal targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet. 2007;81:1232–1250. doi: 10.1086/522238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Anantharam V, Lehrmann E, Kanthasamy A, et al. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease. Neurochem Int. 2007;50:834–847. doi: 10.1016/j.neuint.2007.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Moran LB, Graeber MB. Towards a pathway definition of Parkinson's disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics. 2008;9:1–13. doi: 10.1007/s10048-007-0116-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Runne H, Kuhn A, Wild EJ, et al. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. Proc Natl Acad Sci USA. 2007;104:14424–14429. doi: 10.1073/pnas.0703652104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sorensen G, Medina S, Parchaliuk D, Phillipson C, Robertson C, Booth SA. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics. 2008;9:114. doi: 10.1186/1471-2164-9-114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lehrmann E, Oyler J, Vawter M, et al. Transcriptional profiling in the human prefrontal cortex : evidence for two activational states with cocaine abuse. Pharmacogenomics J. 2003;3:27–40. doi: 10.1038/sj.tpj.6500146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Bannon MJ, Kapatos G, Albertson DN. Gene expression profiling in the brains of human cocaine abusers. Addict Biol. 2005;10:119–126. doi: 10.1080/13556210412331308921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Harper C, Matsumoto I. Ethanol and brain damage. Curr Opin Pharmacol. 2005;5:73–78. doi: 10.1016/j.coph.2004.06.011. [DOI] [PubMed] [Google Scholar]
  • 39.Von Gertten C, Flores Morales A, et al. Genomic responses in rat cerebral cortex after traumatic injury. BMC Neurosci. 2005;6:69. doi: 10.1186/1471-2202-6-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Becker AJ, Chen J, Paus S, et al. Transcriptional profiling in human epilepsy: expression array and single cell real-time qRT-PCR analysis reveal distinct cellular gene regulation. Neuroreport. 2002;13:1327–1333. doi: 10.1097/00001756-200207190-00023. [DOI] [PubMed] [Google Scholar]
  • 41.Majores M, Eils J, Wiestler OD, Becker AJ. Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue and animal models. Epilepsy Res. 2004;60:173–178. doi: 10.1016/j.eplepsyres.2004.07.002. [DOI] [PubMed] [Google Scholar]
  • 42.Gu J, Lynch BA, Anderson D, et al. The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci. 2004;19:334–345. doi: 10.1111/j.0953-816X.2003.03106.x. [DOI] [PubMed] [Google Scholar]
  • 43.Laposa RR, Huang EJ, Cleaver JE. Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proc Natl Acad Sci USA. 2007;104:1389–1394. doi: 10.1073/pnas.0610619104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett síndrome. Hum Mol Genet. 2006;15:2003–2014. doi: 10.1093/hmg/ddl124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Rai M, Doragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE. 2008;3:e1958. doi: 10.1371/journal.pone.0001958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Qiao X, Lu J-Y, Hofmann SL. Gene expression profiling in a Mouse model of infantile neuronal lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response. BMC Neurosci. 2007;8:95. doi: 10.1186/1471-2202-8-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Lindberg RL, De Groot CJ, Certa U, et al. Multiple sclerosis as a generalized CNS disease — comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J Neuroimmunol. 2004;152:154–167. doi: 10.1016/j.jneuroim.2004.03.011. [DOI] [PubMed] [Google Scholar]
  • 48.Lederer CW, Torrisi A, Pantelidou M, et al. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics. 2007;8:26. doi: 10.1186/1471-2164-8-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Coimbra RS, Voisin V, de Saizieu AB, et al. Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biology. 2006;4:15. doi: 10.1186/1741-7007-4-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol. 2007;2:403–422. doi: 10.2217/17460875.2.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Glanzer JG, Haydon PG, Eberwine JH. Expression profile analysis of neurodegenerative disease: advances in specificity and resolution. Neurochem Res. 2004;29:1161–1168. doi: 10.1023/B:NERE.0000023603.17615.8c. [DOI] [PubMed] [Google Scholar]
  • 52.Davis JE, Eberwine JH, Hinkle DA, Marciano PG, Meaney DF, McIntosh TK. Methodological considerations regarding single-cell gene expression profiling for brain injury. Neurochem Res. 2004;29:1113–1121. doi: 10.1023/B:NERE.0000023598.04937.83. [DOI] [PubMed] [Google Scholar]
  • 53.Kisby GE, Olivas A, Standley M, et al. Genotoxicants target distinct molecular networks in neonatal neurons. Environ Health Perspect. 2006;114:1703–1712. doi: 10.1289/ehp.9073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kimpel MW, Strother WN, McClintick JN, et al. Functional gene expression differences between inbred alcohol-preferring and – non-prerats in five brain regions. Alcohol. 2007;41:95–132. doi: 10.1016/j.alcohol.2007.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Ükvist A, Johansson S, Kuzmin A, et al. Neuroadaptations in human chronic alcoholics: tion of the NF-κB system. PLoS ONE. 2007;2(9):e930. doi: 10.1371/journal.pone.0000930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Albertson DN, Pruetz B, Schmidt CJ, et al. Gene expression profile of the nucleus accumbens of human cocaine abusers : evidence for dysregulation of myelin. J Neurochem. 2004;88:1211–1219. doi: 10.1046/j.1471-4159.2003.02247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Lehrmann E, Colantuoni C, Deep-Soboslay A, et al. Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS ONE. 2006;1:e114. doi: 10.1371/journal.pone.0000114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Bak M, Silahtaroglu A, Moller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14:432–444. doi: 10.1261/rna.783108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Cacabelos R, Alvarez A, Fernández-Novoa L, Lombardi VRM. A pharmacogenomic approach to Alzheimer's disease. Acta Neurol Scand. 2000;176(Suppl):12–19. doi: 10.1034/j.1600-0404.2000.00302.x. [DOI] [PubMed] [Google Scholar]
  • 60.Cacabelos R. Dementia. In: Clinical Psychiatry. Jobe TH, Gaviria M, Kovilparambil A, editors. Massachusetts: Blackwell Science; 1997. pp. 73–122. [Google Scholar]
  • 61.Cacabelos R, Fernández-Novoa L, Corzo L, Pichel V, Lombardi V, Kubota Y. Genomics and phenotypic profiles in dementia: implications for pharmacological treatment. Meth Find Exper Clin Pharmacol. 2004;26:421–444. [PubMed] [Google Scholar]
  • 62.Cacabelos R, Lombardi V, Fernández-Novoa L, et al. A functional genomics approach to the analysis of biological markers in Alzheimer disease. In: Takeda M, Tanaka T, Cacabelos R, et al., editors. Molecular Neurobiology of Alzheimer Disease and Related Disorders. Basel: Karger; 2004. pp. 236–285. [Google Scholar]
  • 63.Cacabelos R. Genomic characterization of Alzheimer's disease and genotype-related phenotypic analysis of biological markers in dementia. Pharmacogenomics. 2004;5:1049–1105. doi: 10.1517/14622416.5.8.1049. [DOI] [PubMed] [Google Scholar]
  • 64.Cacabelos R. The histamine-cytokine network in Alzheimer disease: etiopathogenic and pharmacogenomic implications. In: Mizuno Y, Fisher A, Hanin I, editors. Mapping Progress of Alzheimer's and Parkinson's diseases. Advances in Behavioral Biology. New York: Pergamon Press; 2002. pp. 59–64. [Google Scholar]
  • 65.Fernández-Novoa L, Cacabelos R. Histamine function in brain disorders. Behav Brain Res. 2001;124:213–233. doi: 10.1016/S0166-4328(01)00215-7. [DOI] [PubMed] [Google Scholar]
  • 66.Cacabelos R, Corzo L, Fernández-Novoa L, Lombardi V. Histamine in Alzheimer's disease pathogenesis: biochemistry and functional genomics. Meth Find Exper Clin Pharmacol. 2004;26(2):9–16. [Google Scholar]
  • 67.Lombardi VR, García M, Rey L., Cacabelos R. Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer's disease individuals. J Neuroimmunol. 1999;97:163–171. doi: 10.1016/S0165-5728(99)00046-6. [DOI] [PubMed] [Google Scholar]
  • 68.Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007;4:18–61. doi: 10.1016/j.nurt.2006.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945. doi: 10.1038/nature03001. [DOI] [PubMed] [Google Scholar]
  • 70.Subramanian G, Adams MD, Venter JC, Broder S. Implications of the human genome for understanding human biology and medicine. JAMA. 2001;286:2296–2307. doi: 10.1001/jama.286.18.2296. [DOI] [PubMed] [Google Scholar]
  • 71.Nebert DW, Jorge-Nebert LF. Pharmacogenetics and pharmacogenomics. In: Rimoin DL, Connor JM, Pyeritz R, Korf BR, editors. Emery and Rimoin's Principles and Practice of Medical Genetics. 4. Edinburgh: Churchill-Livingstone; 2002. pp. 590–631. [Google Scholar]
  • 72.Evans WE, Johnson JA. Pharmacogenomics: the inherited basis for interindividual differences in drug response. Ann Rev Genomics Genet. 2001;2:9–39. doi: 10.1146/annurev.genom.2.1.9. [DOI] [PubMed] [Google Scholar]
  • 73.Weinshilboum RM, Wang L. Pharmacogenetics and pharma-cogenomics: development, science, and translation. Annu Rev Genomics Hum Genet. 2006;7:223–245. doi: 10.1146/annurev.genom.6.080604.162315. [DOI] [PubMed] [Google Scholar]
  • 74.Cacabelos R. Pharmacogenomics and therapeutic prospect in dementia. Eur Arch Psychiatr Clin Neurosci. 2008;258(1):28–47. doi: 10.1007/s00406-007-1006-x. [DOI] [PubMed] [Google Scholar]
  • 75.Cacabelos R. Pharmacogenetic basis for therapeutic optimization in Alzheimer's disease. Mol Diag Ther. 2007;11:385–405. doi: 10.1007/BF03256262. [DOI] [PubMed] [Google Scholar]
  • 76.Cacabelos R. Influence of pharmacogenetic factors on Alzheimer's disease therapeutics. Neurodegener Dis. 2008;5:176–178. doi: 10.1159/000113695. [DOI] [PubMed] [Google Scholar]
  • 77.Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer's disease pharmacogenetics. Curr Alzheimer Res. 2007;4:479–500. doi: 10.2174/156720507781788846. [DOI] [PubMed] [Google Scholar]
  • 78.Motulski AG. From pharmacogenetics and ecogenetics to pharmacogenomics. Med Secoli. 2002;14:683–705. [PubMed] [Google Scholar]
  • 79.Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348:529–537. doi: 10.1056/NEJMra020021. [DOI] [PubMed] [Google Scholar]
  • 80.Evans WE, McLeod HL. Pharmacogenomics-Drug disposition, drug targets, and side effects. N Engl J Med. 2003;348:538–549. doi: 10.1056/NEJMra020526. [DOI] [PubMed] [Google Scholar]
  • 81.Doshi JA, Shaffer T, Briesacher BA. National estimates of medication use in nursing homes: findings from 1997 Medicare Current Beneficiary Survey and the 1996 Medical Expenditure Survey. J Am Geriatr Soc. 2005;53:438–443. doi: 10.1111/j.1532-5415.2005.53161.x. [DOI] [PubMed] [Google Scholar]
  • 82.Percudani M, Barbui C, Fortino I, Petrovich L. Antidepressant drugs prescribing among elderly subjects: a population-based study. Int J Geriat Psychiat. 2005;20:113–118. doi: 10.1002/gps.1259. [DOI] [PubMed] [Google Scholar]
  • 83.Fialová D, Topinková E, Gambassi G, et al. Potentially inappropriate medication use among elderly home care patients in Europe. JAMA. 2005;293:1348–1358. doi: 10.1001/jama.293.11.1348. [DOI] [PubMed] [Google Scholar]
  • 84.Simon SR, Chan KA, Soumerai SB, et al. Potentially inappropriate medication use by elderly persons in U.S. Health Maintenance Organizations, 2000–2001. J Am Geriatr Soc. 2005;53:227–232. doi: 10.1111/j.1532-5415.2005.53107.x. [DOI] [PubMed] [Google Scholar]
  • 85.Kalow W, Grant DM. Pharmacogenetics. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, editors. The Metabolic & Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001. pp. 225–255. [Google Scholar]
  • 86.Tribut O, Lessard Y, Reymann JM, Allain H, Bentue-Ferrer D. Pharmacogenomics. Med Sci Monit. 2002;8:152–163. [PubMed] [Google Scholar]
  • 87.Saito S, Ishida A, Sekine A, et al. Catalog of 680 variants among eight cytochrome P450 (CYP) genes: nine esterase genes, and two other genes in the Japanese population. J Hum Genet. 2003;48:249–270. doi: 10.1007/s10038-003-0021-7. [DOI] [PubMed] [Google Scholar]
  • 88.Wooding SP, Watkins WS, Bamshad MJ, et al. DNA sequence variations in a 3.7-kb noncoding sequence 5-prime of the CYP1A2 gene: implications for human population history and natural selection. Am J Hum Genet. 2002;71:528–542. doi: 10.1086/342260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Mizutani T. PM frequencies of major CYPs in Asians and Caucasians. Drug Metab Rev. 2003;35:99–106. doi: 10.1081/DMR-120023681. [DOI] [PubMed] [Google Scholar]
  • 90.Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003;59:303–312. doi: 10.1007/s00228-003-0606-2. [DOI] [PubMed] [Google Scholar]
  • 91.Xie HG, Prasad HG, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002;54:1257–1270. doi: 10.1016/S0169-409X(02)00076-5. [DOI] [PubMed] [Google Scholar]
  • 92.Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*51) expressed among African Americans. Mol Pharmacol. 2001;60:382–387. doi: 10.1124/mol.60.2.382. [DOI] [PubMed] [Google Scholar]
  • 93.Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharm Toxicol. 2001;41:815–850. doi: 10.1146/annurev.pharmtox.41.1.815. [DOI] [PubMed] [Google Scholar]
  • 94.Isaza CA, Henao J, López AM, Cacabelos R. Isolation, sequence and genotyping of the drug metabolizer CYP2D6 gene in the Colombian population. Meth Find Exp Clin Pharmacol. 2000;22:695–705. doi: 10.1358/mf.2000.22.9.802286. [DOI] [PubMed] [Google Scholar]
  • 95.Madan A, Graham RA, Carroll KM, et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos. 2003;31:421–431. doi: 10.1124/dmd.31.4.421. [DOI] [PubMed] [Google Scholar]
  • 96.Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: a review. Curr Drug Metabol. 2001;2:245–263. doi: 10.2174/1389200013338513. [DOI] [PubMed] [Google Scholar]
  • 97.Pascussi JM, Gerbal-Chaloin S, Drocourt L, Maurel P, Vilarem MJ. The expression of CYP2B6, CYP2C9 and CYP2A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003;1619:243–253. doi: 10.1016/s0304-4165(02)00483-x. [DOI] [PubMed] [Google Scholar]
  • 98.Honkakoski P, Negishi M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J. 2000;347:321–337. doi: 10.1042/0264-6021:3470321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.www.icgeb.org/
  • 100.www.cypalleles.ki.se/cyp8a1.htm
  • 101.Wedlund P. The CYP2C19 enzyme polymorphism. Pharmacology. 2000;61:174–183. doi: 10.1159/000028398. [DOI] [PubMed] [Google Scholar]
  • 102.Sachse C, Brockmoller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet. 1997;60:284–295. [PMC free article] [PubMed] [Google Scholar]
  • 103.Bentue-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs. 2003;17:947–963. doi: 10.2165/00023210-200317130-00002. [DOI] [PubMed] [Google Scholar]
  • 104.www.imm.ki.se/CYPalleles/cyp2d6.htm.
  • 105.Griese E-U, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics. 1998;8:15–26. doi: 10.1097/00008571-199802000-00003. [DOI] [PubMed] [Google Scholar]
  • 106.Bernal ML, Sinues B, Johansson I, et al. Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenetics. 1999;9:657–660. doi: 10.1097/00008571-199910000-00013. [DOI] [PubMed] [Google Scholar]
  • 107.Farlow MR. Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42:1383–1392. doi: 10.2165/00003088-200342150-00005. [DOI] [PubMed] [Google Scholar]
  • 108.Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur J Clin Pharmacol. 2006;62:721–726. doi: 10.1007/s00228-006-0168-1. [DOI] [PubMed] [Google Scholar]
  • 109.Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer's disease: polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth Find Exper Clin Pharmacol. 2007;29(B):1–91. [PubMed] [Google Scholar]
  • 110.Cacabelos R, Fernández-Novoa L, Pichel V, Lombardi V, Kubota Y, Takeda M. Pharmacogenomic studies with a combination therapy in Alzheimer's disease. In: Takeda M, Tanaka T, Cacabelos R, editors. Molecular Neurobiology of Alzheimer Disease and Related Disorders. Basel: Karger; 2004. pp. 94–107. [Google Scholar]
  • 111.Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist. 2006;11:126–135. doi: 10.1634/theoncologist.11-2-126. [DOI] [PubMed] [Google Scholar]
  • 112.Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother. 1998;32:70–77. doi: 10.1345/aph.17150. [DOI] [PubMed] [Google Scholar]
  • 113.Haugh KH, Bogen IL, Osmundsen H, et al. Effects of cholinergic markers in rat brain and blood after short and prolonged administration of donepezil. Neurochem Res. 2005;30:1511–1520. doi: 10.1007/s11064-005-8828-6. [DOI] [PubMed] [Google Scholar]
  • 114.Bachus R, Bickel U, Thomsen T, Roots I, Kewitz H. The O-demethylation of the antidementia drug galantamine is catalyzed by cytochrome P450 2D6. Pharmacogenetics. 1999;9:661–669. doi: 10.1097/00008571-199912000-00001. [DOI] [PubMed] [Google Scholar]
  • 115.Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer's disease: a comparison of tolerability and pharmacology. Drug Saf. 1998;19:465–480. doi: 10.2165/00002018-199819060-00004. [DOI] [PubMed] [Google Scholar]
  • 116.Zhao Q, van Brett M, Osselaer N, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42:1002–1010. [PubMed] [Google Scholar]
  • 117.Crismon ML. Pharmacokinetics and drug interactions of cholinesterase inhibitors administered in Alzheimer's disease. Pharmacotherapy. 1998;18:47–54. [PubMed] [Google Scholar]
  • 118.Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30:553–563. doi: 10.1124/dmd.30.5.553. [DOI] [PubMed] [Google Scholar]
  • 119.Egger SS, Bachmann A, Hubmann N, Schlienger RG, Krähenbühl S. Prevalence of potentially inappropriate medication use in elderly patients. Comparison between general medicine and geriatric wards. Drugs Aging. 2006;23:823–837. doi: 10.2165/00002512-200623100-00005. [DOI] [PubMed] [Google Scholar]
  • 120.Schuetz EG, Relling MV, Kishi S, et al. PharGKB update: II. CYP3A5, cytochrome P450, family 3, subfamily A, polypeptide 5. Pharmacol Rev. 2004;56:159. doi: 10.1124/pr.56.2.1. [DOI] [PubMed] [Google Scholar]
  • 121.Malhorta AK, Lencz T, Correll CU, Kane JM. Genomics and the future of pharmacotherapy in psychiatry. Int Rev Psychiatr. 2007;19:523–530. doi: 10.1080/09540260701563460. [DOI] [PubMed] [Google Scholar]
  • 122.Dorado P, Peñas-Lledó EM, Llerena A. CYP2D6 polymorphism: implications for antipsychotic drug response, schizo-phrenia and personality traits. Pharmacogenomics. 2007;8:1597–1608. doi: 10.2217/14622416.8.11.1597. [DOI] [PubMed] [Google Scholar]
  • 123.Scordo MG, Spina E. Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics. 2002;3:201–218. doi: 10.1517/14622416.3.2.201. [DOI] [PubMed] [Google Scholar]
  • 124.Ingelman-Sundberg M, Sim SC, Gomez A, Rodríguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116:496–526. doi: 10.1016/j.pharmthera.2007.09.004. [DOI] [PubMed] [Google Scholar]
  • 125.Cavallari LM, Ellingrod VL, Kolesar JM. Pharmaco-Genomics Handbook. 2. Hudson, Ohio: Lexi-Comp; 2005. [Google Scholar]
  • 126.Lacy CF, Armstrong LL, Goldman MP, Lance LL. Drug Information Handbook with International Trade Names Index. 17. Hudson, Ohio: Lexi-Comp; 2008. [Google Scholar]
  • 127.Fuller MA, Sajatovic M. Drug Information Handbook for Psychiatry. 6. Hudson, Ohio: Lexi-Comp; 2007. [Google Scholar]
  • 128.Basile VS, Masellis M, Potkin SG, Kennedy JL. Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum Mol Genet. 2002;11:2517–2530. doi: 10.1093/hmg/11.20.2517. [DOI] [PubMed] [Google Scholar]
  • 129.Reynolds GP, Templeman LA, Zhang ZJ. The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatr. 2005;29:1021–1028. doi: 10.1016/j.pnpbp.2005.03.019. [DOI] [PubMed] [Google Scholar]
  • 130.Zhao AL, Zhao JP, Zhang YH, Xue ZM, Chen JD, Chen XG. Dopamine D4 receptor gene exon III polymorphism and interindividual variation in response to clozapine. Int J Neurosci. 2005;115:1539–1547. doi: 10.1080/00207450590957863. [DOI] [PubMed] [Google Scholar]
  • 131.Yasui-Furukori N, Saito M, Nakagami T, Kaneda A, Tateishi T, Kaneko S. Association between multidrug resistance 1 (MDR1) gene polymorphism and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatr. 2006;30:286–291. doi: 10.1016/j.pnpbp.2005.06.019. [DOI] [PubMed] [Google Scholar]
  • 132.Srivastava V, Varma PG, Prasad S, et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: I V. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics. 2006;16:111–117. doi: 10.1097/01.fpc.0000184957.98150.0f. [DOI] [PubMed] [Google Scholar]
  • 133.Lencz T, Robinson DG, Xu K, et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenic patients. Am J Psychiatr. 2006;163:529–531. doi: 10.1176/appi.ajp.163.3.529. [DOI] [PubMed] [Google Scholar]
  • 134.Reynolds GP, Templeman LA, Godewska BR. Phachizophrenia. Expert Opin Pharmacother. 2006;7:1429–1440. doi: 10.1517/14656566.7.11.1429. [DOI] [PubMed] [Google Scholar]
  • 135.Lin YC, Ellingrod VL, Bishop JR, Miller D. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit. 2006;28:668–672. doi: 10.1097/01.ftd.0000246761.82377.a6. [DOI] [PubMed] [Google Scholar]
  • 136.Xing Q, Gao R, Li H, et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics. 2006;7:987–993. doi: 10.2217/14622416.7.7.987. [DOI] [PubMed] [Google Scholar]
  • 137.Freudenberg-Hua Y, Freudenberg J, Winantea J, et al. Systematic investigation of genetic variability in 111 human genes — implications for studying variable drug response. Pharmacogenomics J. 2005;5:183–192. doi: 10.1038/sj.tpj.6500306. [DOI] [PubMed] [Google Scholar]
  • 138.Malhotra AK, Murohy GM, Kennedy JL. Pharmacogenetics of psychotropic drug response. Am J Psychiatr. 2004;161:780–796. doi: 10.1176/appi.ajp.161.5.780. [DOI] [PubMed] [Google Scholar]
  • 139.Nnadi CU, Malhorta AK. Individualizing antipsychotic drug therapy in schizophrenia: the promise of pharmacogenetics. Curr Psychiatr Rep. 2007;9:313–318. doi: 10.1007/s11920-007-0038-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Foster A, Miller D, Buckley PF. Pharmacogenetics and schizophrenia. Psychiatr Clin North Am. 2007;30:417–435. doi: 10.1016/j.psc.2007.04.004. [DOI] [PubMed] [Google Scholar]
  • 141.Arranz MJ, de Leon J. Pharmacogenetics and pharmacog-enomics of schizophrenia: a review of last decade of research. Mol Psychiatr. 2007;12:707–743. doi: 10.1038/sj.mp.4002009. [DOI] [PubMed] [Google Scholar]
  • 142.Wong M-L, Whelan F, Deloukas P, et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci USA. 2006;103:15124–15129. doi: 10.1073/pnas.0602795103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Hansen T, Jakobsen KD, Fenger M et al. Variation in the purinergic P2RX(7) receptor gene and schizophrenia. Schizophr Res 2008 (Epub ahead of print). [DOI] [PubMed]
  • 144.Hamdani N, Tabeze JP, Ramoz N, et al. The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur Neuropsychopharmacol. 2008;18:34–40. doi: 10.1016/j.euroneuro.2007.05.005. [DOI] [PubMed] [Google Scholar]
  • 145.Ferno J, Skrede S, Vik-Mo A, Havik B, Steen VM. Druginduced activation of SREP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neuroscience. 2006;7:69. doi: 10.1186/1471-2202-7-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Greenbaum L, Smith RC, Rigbi A et al. Further evidence for association of the RGS2 gene with antipsychoticinduced parkinsonism: protective role of a functional polymorphism in the 3′-untranslated region. Pharmacogenomics J 2008 (Epub ahead of print). [DOI] [PubMed]
  • 147.Campbell DB, Ebert PJ, Skelly T, et al. Ethnic stratification of the association of RGS4 variants with antipsychotic treatment response in schizophrenia. Biol Psychiatr. 2008;63:32–41. doi: 10.1016/j.biopsych.2007.04.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Ozdemir V, Basile VS, Masellis M, Kennedy JL. Pharmacogenetic assessment of antipsychotic-induced movement disorders: contribution of the dopamine D3 receptor and cytochrome P450 1A2 genes. J Biochem Biophys Methods. 2001;47:151–157. doi: 10.1016/S0165-022X(00)00161-5. [DOI] [PubMed] [Google Scholar]
  • 149.Nikoloff D, Shim JC, Fairchild M, et al. Association between CYP2D6 genotype and tardive dyskinesia in Korean schizophrenics. Pharmacogenomics J. 2002;2:400–407. doi: 10.1038/sj.tpj.6500138. [DOI] [PubMed] [Google Scholar]
  • 150.Liou YJ, Lai IC, Lin MW, et al. Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics. 2006;16:151–157. doi: 10.1097/01.fpc.0000184958.05775.66. [DOI] [PubMed] [Google Scholar]
  • 151.Kim B, Choi EY, Kim CY, Song K, Joo YH. Could HTR2A T102C and DRD3 Ser9Gly predict clinical improvement in patients with acutely exacerbated schizophrenia? Results from treatment responses to risperidone in a naturalistic setting. Hum Psychopharmacol. 2008;23:61–67. doi: 10.1002/hup.897. [DOI] [PubMed] [Google Scholar]
  • 152.Wang L, Fang C, Zhang A et al. The -1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol 2008 (Epub ahead of print). [DOI] [PubMed]
  • 153.Anttila S, Illi A, Kampman O, Mattila KM, Lehtimäki T, Leinonen E. Interaction between NOTCH4 and catechol-O-methyltransferase genotypes in schizophrenia patients with poor response to typical neuroleptics. Pharmacogenetics. 2004;14:303–307. doi: 10.1097/00008571-200405000-00005. [DOI] [PubMed] [Google Scholar]
  • 154.Lavedan C, Volpi S, Polymeropoulos MH, Wolfgang CD. Effect of a ciliary neurotrophic factor polymorphism on schizophrenia symptom improvement in an iloperidone clinical trial. Pharmacogenetics. 2008;9:289–301. doi: 10.2217/14622416.9.3.289. [DOI] [PubMed] [Google Scholar]
  • 155.Strous RD, Greenbaum L, Kanyas K, et al. Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol. 2007;10:321–333. doi: 10.1017/S1461145706006651. [DOI] [PubMed] [Google Scholar]
  • 156.Méary A, Brousse G, Jamain S, et al. Pharmacogenetic study of atypical antipsychotic drug response : involvement of the norepinephrine transporter gene. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:491–494. doi: 10.1002/ajmg.b.30635. [DOI] [PubMed] [Google Scholar]
  • 157.Zhang XY, Tan YL, Zhou DF, et al. Association of clozapine-induced weight gain with a polymorphism in the leptin promoter region in patients with chronic schizophrenia in a Chinese population. J Clin Psychopharmacol. 2007;27:246–251. doi: 10.1097/jcp.0b013e3180582412. [DOI] [PubMed] [Google Scholar]
  • 158.Ellingrod VL, Bishop JR, Moline J, Lin YC, Miller D. Leptin and leptin receptor gene polymorphisms and increases in body mass index (BMI) from olanzapine treatment in persons with schizophrenia. Psychopharmacol Bull. 2007;40:57–62. [PubMed] [Google Scholar]
  • 159.Templeman LA, Reynolds GP, Arranz B, San L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psicosis. Pharmacogenet Genomics. 2005;15:195–200. doi: 10.1097/01213011-200504000-00002. [DOI] [PubMed] [Google Scholar]
  • 160.Gass JT, Olive MF. Transcriptional profiling of the rat frontal cortex following administration of the mGlu5 antagonists MPEP and MTEP. Eur J Pharmacol. 2008;584:253–262. doi: 10.1016/j.ejphar.2008.02.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Paddock S, Laje G, Charney D, et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatr. 2007;164:1181–1188. doi: 10.1176/appi.ajp.2007.06111790. [DOI] [PubMed] [Google Scholar]
  • 162.Tsai SJ, Liou YJ, Hong CJ, Yu YW, Chen TJ. Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in Chinese major depressive disorder. Pharmacogenomics J 2008 (Epub ahead of print) [DOI] [PubMed]
  • 163.Mamdani F, Alda M, Grof P, Young LT, Rouleau G, Turecki G. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:500–504. doi: 10.1002/ajmg.b.30617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Duke DC, Moran LB, Pearce RK, Graeber MB. The medial and lateral substantia nigra in Parkinson's disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics. 2007;8:83–94. doi: 10.1007/s10048-006-0077-6. [DOI] [PubMed] [Google Scholar]
  • 165.Gillardon F, Steinlein P, Bürger E, Hildebrandt T, Gerner C. Phosphoproteome and transcriptome analysis of the neuronal response to a CDK5 inhibitor. Proteomics. 2005;5:1299–1307. doi: 10.1002/pmic.200400992. [DOI] [PubMed] [Google Scholar]
  • 166.Pinsonneault JK, Papp AC, Sadée W. Allelic mRNA expression of X-linked monoamine oxidase A (MAOA) in human brain : dissection of epigenetic and genetic factors. Hum Mol Genet. 2006;15:2636–2649. doi: 10.1093/hmg/ddl192. [DOI] [PubMed] [Google Scholar]
  • 167.Crews D. Epigenetics and its implications for behavioural neuroendocrinology. Neuroendocrinol. 2008;29:344–357. doi: 10.1016/j.yfrne.2008.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Chavez-Blanco A, Pérez-Plasencia C, Pérez-Cárdenas E, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Intern. 2006;6:2. doi: 10.1186/1475-2867-6-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Abdolmaleky HM, Smith CL, Zhou JR, Thiagalingam S. Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Meth Mol Biol. 2008;448:187–212. doi: 10.1007/978-1-59745-205-2_9. [DOI] [PubMed] [Google Scholar]
  • 170.Gómez-Mancilla B, Marrer E, Kehren J, et al. Central Nervous system drug development: an integrative biomarker approach toward individualized medicine. NeuroRx. 2005;2:683–695. doi: 10.1602/neurorx.2.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Cacabelos R. Pleiotropic effects of APOE in dementia: influence on functional genomics and pharmacogenetics. In: Fisher A, Memo M, Stocchi F, Hanin I, editors. Advances in Alzheimer's and Parkinson's disease. Insights, Progress, and Perspectives. New York: Springer; 2008. pp. 355–367. [Google Scholar]
  • 172.Cacabelos R, Rodríguez B, Carrera C, et al. APOE-Related dementia symptoms: frequency and progression. Ann Psychiatr. 1996;6:189–205. [Google Scholar]
  • 173.Cacabelos R, Rodríguez B, Carrera C, Caamaño J, Beyer K, Lao JI, Sellers MA. APOE- Related frequency of cognitive and noncognitive symptoms in dementia. Meth Find Exp Clin Pharmacol. 1996;18:693–706. [PubMed] [Google Scholar]
  • 174.Cacabelos R, Rodríguez B, Carrera C, et al. Behavioral changes associated with different apolipoprotein E genotypes in dementia. Alzheimer's Dis Assoc Dis. 1997;l l(4):S27–S37. [PubMed] [Google Scholar]
  • 175.Baghai TC, Binder EB, Schule C, et al. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol Psychiatr. 2006;11:1003–1015. doi: 10.1038/sj.mp.4001884. [DOI] [PubMed] [Google Scholar]
  • 176.Bellivier F, Laplanche JL, Schurhoff F, et al. Apolipoprotein E gene polymorphism in early and late onset bipolar patients. Neurosci Lett. 1997;233:45–48. doi: 10.1016/S0304-3940(97)00624-1. [DOI] [PubMed] [Google Scholar]
  • 177.Olsson M, Annerbrink K, Westberg L, et al. Angiotensin-related genes in patients with panic disorder. Am J Med Genet B Neuropsychiatr Genet. 2004;127:81–84. doi: 10.1002/ajmg.b.20164. [DOI] [PubMed] [Google Scholar]
  • 178.Steinberg M, Corcoran C, Tschanz JT, et al. Risk factors for neuropsychiatric symptoms in dementia : the Cache County Study. Int J Geriatr Psychiatr. 2006;21:824–830. doi: 10.1002/gps.1567. [DOI] [PubMed] [Google Scholar]
  • 179.van der Flier Wm, Staekenborg S, Pijnenburg YA, et al. Apolipoprotein E genotype influences presence and severity of delusions and aggressive behavior in Alzheimer disease. Dement Geriatr Cogn Disord. 2006;23:42–46. doi: 10.1159/000096682. [DOI] [PubMed] [Google Scholar]
  • 180.Flicker L, Martins RN, Thomas J, et al. Homocysteine, Alzheimer genes and proteins, and measures of cognition and depression in older men. J Alzheimer Dis. 2004;6:329–336. doi: 10.3233/jad-2004-6313. [DOI] [PubMed] [Google Scholar]
  • 181.Muller-Thomsen T, Artl S, Ganzer S, et al. Depression in Alzheimer's disease might be associated with apolipoprotein E epsilon 4 allele frequency in women but not in men. Dement Geriatr Cogn Disord. 2002;14:59–63. doi: 10.1159/000064926. [DOI] [PubMed] [Google Scholar]
  • 182.Hollingworth P, Hamshire ML, Moskvina V, et al. Four components describe behavioral symptoms in 1,120 individuals with late-onset Alzheimer's disease. J Am Geriatr Soc. 2006;54:1348–1354. doi: 10.1111/j.1532-5415.2006.00854.x. [DOI] [PubMed] [Google Scholar]
  • 183.Craig D, Hart DJ, McIlroy SP, Passmore AP. Association analysis of apolipoprotein E genotype and risk of depressive symptoms in Alzheimer's disease. Dement Geriatr Cogn Disord. 2005;19:154–157. doi: 10.1159/000082887. [DOI] [PubMed] [Google Scholar]
  • 184.Gabryelewicz T, Religa D, Styczynska M, et al. Behavioural pathology in Alzheimer's disease with special reference to apolipoprotein E genotype. Dement Geriatr Cogn Disord. 2002;14:208–212. doi: 10.1159/000066020. [DOI] [PubMed] [Google Scholar]
  • 185.Steffens DC, Norton MC, Hart AD, et al. Apolipoprotein E genotype and major depression in a community of older adults. The Cache County Study. Psychol Med. 2003;33:541–547. doi: 10.1017/S0033291702007201. [DOI] [PubMed] [Google Scholar]
  • 186.Fan PL, Chen CD, Kao WT, et al. Protective effect of the Apoε2 allele in major depressive disorder in Taiwanese. Acta Psychiatr Scand. 2006;113:48–53. doi: 10.1111/j.1600-0447.2005.00686.x. [DOI] [PubMed] [Google Scholar]
  • 187.Butters MA, Sweet RA, Mulsant BH, et al. APOE is associated with age-of-onset, but not cognitive functioning, in late-life depression. Int J Geriatr Psychiatr. 2003;18:1075–1081. doi: 10.1002/gps.1006. [DOI] [PubMed] [Google Scholar]
  • 188.Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T, Raber J. ApoE isoforms and measures of anxiety in probable AD patients and Apoe−/− mice. Neurobiol Aging. 2005;26:637–643. doi: 10.1016/j.neurobiolaging.2004.06.003. [DOI] [PubMed] [Google Scholar]
  • 189.McLachlan CS, Yi Xing Soh C. Differences in anxiety-related behaviour between apolipoprotein E-deficient C57BL/6 and wild type C57BL/6 mice. Physiol Res. 2005;54:701–704. [PubMed] [Google Scholar]
  • 190.Bongers G, Leurs R, Robertson J, Raber J. Role of H3-receptor-mediated signaling in anxiety and cognition in wild-type and Apoe-/- mice. Neuropsychopharmacology. 2004;29:441–449. doi: 10.1038/sj.npp.1300352. [DOI] [PubMed] [Google Scholar]
  • 191.Nebes RD, Vora IJ, Meltzer CC, et al. Relationship of deep white matter hyperintensities and apolipoprotein E genotype to depressive symptoms in older adults without clinical depression. Am J Psychiatr. 2001;158:878–884. doi: 10.1176/appi.ajp.158.6.878. [DOI] [PubMed] [Google Scholar]
  • 192.Naismith S, Hickie I, Ward PB, et al. Caudate nucleus volumes and genetic determinants of homocysteine metabolism in the prediction of psychomotor speed in older persons with depression. Am J Psychiatr. 2002;159:2096–2098. doi: 10.1176/appi.ajp.159.12.2096. [DOI] [PubMed] [Google Scholar]
  • 193.O'Brien JT, Lloyd A, McKeith I, Gholkar A, Ferrier N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am J Psychiatr. 2004;161:2081–2090. doi: 10.1176/appi.ajp.161.11.2081. [DOI] [PubMed] [Google Scholar]
  • 194.Hickie I, Naismith S, Ward PB, et al. Reduced hippocapal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatr. 2005;186:197–202. doi: 10.1192/bjp.186.3.197. [DOI] [PubMed] [Google Scholar]
  • 195.Kim JM, Stewart R, Shin IS, Yoon JS. Vascular/risk and late-life depression in a Korean community population. Br J Psychiatr. 2004;185:102–107. doi: 10.1192/bjp.185.2.102. [DOI] [PubMed] [Google Scholar]
  • 196.Philips KA, Van Bebber SL. Measuring the value of pharma-cogenomics. Nature Rev Drug Discovery. 2005;4:500–509. doi: 10.1038/nrd1749. [DOI] [PubMed] [Google Scholar]
  • 197.Veenstra DL, Higashi MK. Assessing the cost-effectiveness of pharmacogenomics. AAPS Pharm Sci. 2000;2(3 Artic 29):1–11. doi: 10.1208/ps020329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Sink KM, Holden KF, Yaffe K. Pharmacological treatment of neuropsychiatric symptoms of dementia. A review of the evidence. JAMA. 2005;293:596–608. doi: 10.1001/jama.293.5.596. [DOI] [PubMed] [Google Scholar]
  • 199.Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med. 2003;348:1333–1341. doi: 10.1056/NEJMoa013128. [DOI] [PubMed] [Google Scholar]
  • 200.Winblad B, Kilander L, Eriksson S, et al. Donepezil in patients with severe Alzheimer's disease: double-blind, parallel-group, placebo-controlled study. Lancet. 2006;367:1057–1065. doi: 10.1016/S0140-6736(06)68350-5. [DOI] [PubMed] [Google Scholar]
  • 201.Hogan DB. Donepezil for severe Alzheimer's disease. Lancet. 2006;367:1031–1032. doi: 10.1016/S0140-6736(06)68395-5. [DOI] [PubMed] [Google Scholar]
  • 202.Need AC, Motulsky AG, Goldstein DB. Priorities and standards in pharmacogenetic research. Nature Genet. 2005;37:671–681. doi: 10.1038/ng1593. [DOI] [PubMed] [Google Scholar]
  • 203.Van Steen K, McQueen MB, Herbert A, et al. Genomic screening and replication using the same data set in family-based association testing. Nature Genet. 2005;37:683–691. doi: 10.1038/ng1582. [DOI] [PubMed] [Google Scholar]
  • 204.Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharm acogenomics and individualized drug therapy. Annu Rev Med. 2006;57:119–137. doi: 10.1146/annurev.med.56.082103.104724. [DOI] [PubMed] [Google Scholar]
  • 205.Barlow-Stewart K, Burnett L. Ethical considerations in the use of DNA for the diagnosis of disease. Clin Biochem Rev. 2006;27:53–61. [PMC free article] [PubMed] [Google Scholar]
  • 206.www.pharmgkb.org

Articles from The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes are provided here courtesy of Nature Publishing Group

RESOURCES