Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;38(1):31–40. doi: 10.1016/0378-1135(93)90073-G

Immunization of pregnant gilts with PRCV induces lactogenic immunity for protection of nursing piglets from challenge with TGEV

Ronald D Wesley a,, Roger D Woods a
PMCID: PMC7117125  PMID: 8128601

Abstract

The level of passive protection against transmissible gastroenteritis virus (TGEV) was evaluated by experimentally infecting 12 pregnant gilts with different doses of porcine respiratory coronavirus (PRCV) and challenging their litters at 4 days of age. An overall survival rate of 70% was found for piglets nursing the 12 PRCV-infected gilts, compared to a 16% survival rate for piglets of nine uninfected control gilts. Six of the PRCV-infected gilts had adequate levels of immunity to resist infection with TGEV following the challenge of their litters. These six completely immuned gilts also solidly protected their litters from TGEV as shown by a 96% piglet survival rate through weaning at 3 weeks of age. The results suggest that respiratory infection with PRCV induces a substantial degree of protective lactogenic immunity against TGEV.

Keywords: Transmissible gastroenteritis virus, Porcine respiratory coronavirus, Pig, Immunity, Vaccination

References

  1. Bernard S., Bottreau E., Aynaud J.M., Have P., Szymansky J. Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis. Vet. Microbiol. 1989;21:1–8. doi: 10.1016/0378-1135(89)90013-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cox E., Pensaert M.B., Callebaut P. Intestinal protection against challenge with transmissible gastroenteritis virus of pigs immune after infection with the porcine respiratory coronavirus. Vaccine. 1993;11:267–272. doi: 10.1016/0264-410X(93)90028-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Diego M., Laviada M.D., Enjuanes L., Escribano J.M. Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus. J. Virol. 1992;66:6502–6508. doi: 10.1128/jvi.66.11.6502-6508.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egan I.T., Harris D.L., Hill H.T. Proc. 86th Ann. Mtg. U.S. Anim. Health Assoc; 1982. Prevalence of swine dysentery, transmissible gastroenteritis, and pseudorabies in Iowa, Illinois and Missouri swine; pp. 497–502. [Google Scholar]
  5. Hill H., Biwer J., Woods R., Wesley R. Proc. Ann. Mtg. Am. Assoc. Swine Practitioners; 1990. Porcine respiratory coronavirus isolated from two U.S. swine herds; pp. 333–335. [Google Scholar]
  6. Hooyberghs J., Pensaert M.B., Callebaut P. Proc. Int. Pig Vet. Soc. 10th Congr. 1988. Transmissible gastroenteritis: outbreaks in swine herds previously infected with a TGEV-like porcine respiratory coronavirus; p. 200. (Rio de Janeiro) [Google Scholar]
  7. National Swine Survey . USDA, Animal and Plant Health Inspections Service, Veterinary Services; Nov. 1991. Morbidity/mortality and health management of swine in the United States. [Google Scholar]
  8. Paton D.J., Brown I.H. Sows infected in pregnancy with porcine respiratory coronavirus show no evidence of protecting their sucking piglets against transmissible gastroenteritis. Vet. Res. Comm. 1990;14:329–337. doi: 10.1007/BF00350714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pensaert M., Callebaut P., Vergote J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986;8:257–261. doi: 10.1080/01652176.1986.9694050. [DOI] [PubMed] [Google Scholar]
  10. Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
  11. Saif L.J., Wesley R.D. Transmissible gastroenteritis. In: Leman A.D., Straw B., editors. Diseases of Swine. 7th Edition. Iowa State University Press; Ames, Iowa: 1992. pp. 362–386. [Google Scholar]
  12. Sánchez C.M., Gebauer F., Suñé C., Mendez A., Dopazo J., Enjuanes L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology. 1992;190:92–105. doi: 10.1016/0042-6822(92)91195-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wesley R.D., Woods R.D., Correa I., Enjuanes L. Lack of protection in vivo with neutralizing monoclonal antibodies to transmissible gastroenteritis virus. Vet. Microbiol. 1988;18:197–208. doi: 10.1016/0378-1135(88)90087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wesley R.D., Woods R.D., Hill H.T., Biwer J.D. Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States. J. Vet. Diagn. Invest. 1990;2:312–317. doi: 10.1177/104063879000200411. [DOI] [PubMed] [Google Scholar]
  15. Wesley R.D., Woods R.D., Cheung A.K. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J. Virol. 1991;65:3369–3373. doi: 10.1128/jvi.65.6.3369-3373.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Woods R.D., Wesley R.D., Kapke P.A. Neutralization of porcine transmissible gastroenteritis virus by complement-dependent monoclonal antibodies. Am. J. Vet. Res. 1988;49:300–304. [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES