Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;36(1):1–37. doi: 10.1016/0378-1135(93)90126-R

A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination

Christopher W Olsen 1,
PMCID: PMC7117146  PMID: 8236772

Abstract

Feline infectious peritontis (FIP) has been an elusive and frustrating problem for veterinary practitioners and cat breeders for many years. Over the last several years, reports have begun to elucidate aspects of the molecular biology of the causal virus (FIPV). These papers complement a rapidly growing base of knowledge concerning the molecular organization and replication of coronaviruses in general. The fascinating immunopathogenesis of FIPV infection and the virus' interaction with macrophages has also been the subject of several recent papers. It is now clear that FIPV may be of interest to scientists other than veterinary virologists since its pathogenesis may provide a useful model system for other viruses whose infectivity is enhanced in the presence of virus-specific antibody. With these advances and the recent release of the first commercially-available FIPV vaccine, it is appropriate to review what is known about the organization and replication of coronaviruses and the pathogenesis of FIPV infection.

References

  1. Addie D.D., Jarrett O. Control of feline coronavirus infection in kittens. Vet. Rec. 1990;126:164. [PubMed] [Google Scholar]
  2. Addie D.D., Jarrett O. A study of naturally occurring feline coronavirus infection in kittens. Vet. Rec. 1992;130:133–137. doi: 10.1136/vr.130.7.133. [DOI] [PubMed] [Google Scholar]
  3. Allan J.S., Strauss J., Buck D.W. Enhancement of SIV infection with soluble receptor molecules. Science. 1990;247:1084–1088. doi: 10.1126/science.2309120. [DOI] [PubMed] [Google Scholar]
  4. Ananaba G.A., Anderson L.J. Antibody enhancement of respiratory syncytial virus stimulation of leukotriene production by a macrophagelike cell line. J. Virol. 1991;65:5052–5060. doi: 10.1128/jvi.65.9.5052-5060.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baines J.D. Cornell University; Ithaca, NY: 1988. (PhD thesis). [Google Scholar]
  6. Baker S.C., Shieh C.-K., Soe L.H., Chang M.-F., Vannier D.M., Lai M.M.C. Identification of a domain required for autoproteolyic cleavage of murine coronavirus gene A polyprotein. J. Virol. 1989;63:3693–3699. doi: 10.1128/jvi.63.9.3693-3699.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Banerjee A.K. Transcription and replication of rhabdoviruses. Microbiol. Rev. 1987;51:66–87. doi: 10.1128/mr.51.1.66-87.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Banner L.R., Lai M.M.C. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1991;185:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Banner L.R., Keck J.G., Lai M.M.C. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990;175:548–555. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baric R.S., Nelson G.W., Fleming J.O., Deans R.J., Keck J.G., Casteel N., Stohlman S.A. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Virol. 1988;62:4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Barlough J.E., Scott F.W. Feline infectious peritonitis. In: Barlough J.E., editor. Manual of Small Animal Infectious Diseases. Churchill Livingston; NY: 1988. pp. 63–78. [Google Scholar]
  12. Barlough J.E., Johnson-Lussenburg C.M., Stoddart C.A., Jacobson R.H., Scott F.W. Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus. Can. J. Comp. Med. 1985;49:303–307. [PMC free article] [PubMed] [Google Scholar]
  13. Barlough J.E., Stoddart C.A., Sorresso G.P., Jacobson R.H., Scott F.W. Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus. Lab. An. Sci. 1984;34:592–597. [PubMed] [Google Scholar]
  14. Beards G.M., Hall C., Green J., Flewett T.H., Lamouliatte F., du Pasquier P. An enveloped virus in the stools of children and adults with gastroenteritis that resembles Breda virus of calves. Lancet. 1984;12:1050–1052. doi: 10.1016/S0140-6736(84)91454-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Binns M.M., Boursnell M.E.G., Cavanaugh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
  16. Bolognesi D.P. Do antibodies enhance the infection of cells by HIV? Nature (London) 1989;340:431–432. doi: 10.1038/340431a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  18. Brayton P.R., Stohlman S.A., Lai M.M.C. Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases. Virology. 1984;133:197–201. doi: 10.1016/0042-6822(84)90439-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brieirley I., Boursnell M.E.G., Binns M.M., Bilimoria B., Blok V.C., Brown T.D.K., Inglis S.C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Brieirley I., Digard P., Inglis S.C. Characterization of an efficient ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Burstin S.J., Brandriss M.W., Schlesinger J.J. Infection of a macrophage-like cell line, P388D1, with reovirus; effects of immune ascitic fluids and monoclonal antibodies on neutralization and on enhancement of viral growth. J. Immunol. 1983;130:2915–2919. [PubMed] [Google Scholar]
  22. Callebaut P., Correa I., Pensaert M., Jimenez G., Enjuanes L. Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J. Gen. Virol. 1988;69:1725–1730. doi: 10.1099/0022-1317-69-7-1725. [DOI] [PubMed] [Google Scholar]
  23. Callebaut P., Pensaert M.B., Hooyberghs J. A competitive inhibition ELISA for the differentiation of serum antibodies from pigs infected with transmissible gastroenteritis virus (TGEV) or with the TGEV-related porcine respiratory coronavirus. Vet. Microbiol. 1989;20:9–19. doi: 10.1016/0378-1135(89)90003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Cardosa M.J., Gordon S., Hirsch S., Springer T.A., Porterfield J.S. Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J. Virol. 1986;57:952–959. doi: 10.1128/jvi.57.3.952-959.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Cardosa M.J., Porterfield J.S., Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages. J. Exp. Med. 1983;158:258–263. doi: 10.1084/jem.158.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cavanaugh D., Davis P.J., Pappin D.J.C., Binns M.M., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV: partial amino terminal sequencing of spike polyprotein S2 identifies the sequence arg-arg-phe-arg-arg at the cleavage site of the spike precursor polyprotein of IBV strains Beaudette and M41. Virus Res. 1986;4:133–143. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chanas A.C., Gould E.A., Clegg J.C.S., Varma M.G.R. Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J. Gen. Virol. 1982;58:37–46. doi: 10.1099/0022-1317-58-1-37. [DOI] [PubMed] [Google Scholar]
  28. Christianson K.K., Ingersoll J.D., Landon R.M., Pfeiffer N.E., Gerber J.D. Characterization of a temperature sensitive feline infectious peritonitis coronavirus. Arch. Virol. 1989;109:185–196. doi: 10.1007/BF01311080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chung S., Sinclair S., Leibowitz J., Skamene E., Fung L.S., Levy G. Cellular and metabolic requirements for the induction of macrophage procoagulant activity by murine hepatitis virus strain 3 in vitro. J. Immunol. 1991;146:271–278. [PubMed] [Google Scholar]
  30. Connor R.I., Dinces N.B., Howell A.L., Romet-Lemmonne J.-L., Pasquali J.-L., Fanger M.W. Vol. 88. 1991. Fc receptors for IgGs (FcγRs) on human monocytes and macrophages are not infectivity receptors for human immunodeficiency virus type 1 (HIV-1): studies using bispecific antibodies to target HIV-1 to various myeloid cell surface molecules, including the FcγR; pp. 9593–9597. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Corapi W.V., Olsen C.W., Scott F.W. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritontis virus. J. Virol. 1992 doi: 10.1128/jvi.66.11.6695-6705.1992. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Correa I., Gebauer F., Bullido M.J., Sune C., Baay M.F.D., Zwaagstra K.A., Posthumus W.P.A., Lenstra J.A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990;71:271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
  33. Correa I., Jimenez G., Sune C., Bullido M.J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cox E., Hooyberghs J., Pensaert M.B. Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res. Vet. Sci. 1990;48:165–169. doi: 10.1016/S0034-5288(18)30984-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cox E., Pensaert M.B., Callebaut P., Van Deun K. Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet. Microbiol. 1990;23:237–243. doi: 10.1016/0378-1135(90)90154-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Dalziel R.G., Lambert P.W., Talbot P.J., Buchmeier M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Dea S., Roy R.S., Elazhary M.A.S.Y. Coronavirus-like particles in the feces of a cat with diarrhea. Can. Vet. J. 1982;23:153–155. [PMC free article] [PubMed] [Google Scholar]
  38. Dea S., Verbeek A.J., Tijssen P. Antigenic and genomic relationships among turkey and bovine enteric coronaviruses. J. Virol. 1990;64:3112–3118. doi: 10.1128/jvi.64.6.3112-3118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. De Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79–1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large deletions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. De Groot R.J., Lenstra J.A., Luytjes W., Miesters H.G., Horzinek M.C., Van Der Zeijst B.A., Spaan W.J.M. Sequence and structure of the coronavirus peplomer protein. Adv. Exp. Med. Biol. 1987;218:31–38. doi: 10.1007/978-1-4684-1280-2_4. [DOI] [PubMed] [Google Scholar]
  41. De Groot R.J., Luytjes W., Horzinek M.C., Van Der Zeijst B.A., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. De Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., Van Der Zeijst B.A.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
  43. DeGroot R.J., Ter Haar R.J., Horzinek M.C., Van Der Zeijst B.A.M. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79-1146. J. Gen. Virol. 1987;68:995–1002. doi: 10.1099/0022-1317-68-4-995. [DOI] [PubMed] [Google Scholar]
  44. De Groot R.J., Van Leen R.W., Dalderup M.J.M., Vennema H., Horzinek M.C., Spaan W.J.M. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989;171:493–502. doi: 10.1016/0042-6822(89)90619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Delmas B., Laude H. Carbohydrate-induced conformational changes strongly modulate the antigenicity of coronavirus TGEV glycoproteins S and M. Virus Res. 1991;20:107–120. doi: 10.1016/0168-1702(91)90103-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
  48. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of the spike protein. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
  49. Den Boon J.A., Snijder E.J., Chirnside E.D., De Vries A.A.F., Horzinek M.C., Spaan W.J.M. Equine arteritis is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 1991;65:2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Denison M., Perlman S. Identification of putative polymerase gene product in cells infected with murine coronavirus A59. Virology. 1987;157:565–568. doi: 10.1016/0042-6822(87)90303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Denison M.R., Zoltick P.W., Leobowitz J.L., Pachuk C.J., Weiss S.R. Identification of polypeptides encoded in open reading frame 1b of the putative polymerase gene of the murine coronavirus mouse hepatitis virus A59. J. Virol. 1991;65:3076–3082. doi: 10.1128/jvi.65.6.3076-3082.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. De Rossi A., Pasti M., Mammano F., Panozzo M., Dettin M., Di Bello C., Chieco-Bianchi L. Synthetic peptides from the principal neutralizing domain of human immunodeficiency virus type 1 (HIV-1) enhance HIV-1 infection through a C CD4-dependent mechanism. Virology. 1991;184:187–196. doi: 10.1016/0042-6822(91)90835-y. [DOI] [PubMed] [Google Scholar]
  53. Descoteaux J.-P., Lussier G. Experimental infection of young rabbits with a rabbit enteric coronavirus. Can. J. Vet. Res. 1990;54:473–476. [PMC free article] [PubMed] [Google Scholar]
  54. Dvelsler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.-S., Holmes K.V., Dieffenbach C.V. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J, Virol. 1991;65:6881–6891. doi: 10.1128/jvi.65.12.6881-6891.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Edwards S., Small J.D., Geratz J.D., Alexander L.K., Baric R.S. An experimental model for myocarditis and congestive heart failure after rabbit coronavirus infection. J. Infect. Dis. 1992;165:134–140. doi: 10.1093/infdis/165.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Evermann J.F., Heeney J.L., Roelke M.E., McKiernan A.J., O'Brien S.J. Biological and pathological consequences of feline infectious peritonitis virus infection in the cheetah. Arch. Virol. 1988;102:155–171. doi: 10.1007/BF01310822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Evermann J.F., McKeirnan A.J., Ott R.L. Perspectives on the epizootiology of feline enteric coronavirus and the pathogenesis of feline infectious peritonitis. Vet. Microbiol. 1991;28:243–255. doi: 10.1016/0378-1135(91)90079-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fanton R.W. Field safety studies of an intranasal FIPV vaccine. Proceedings of the symposium: new perspectives on prevention of feline infectious peritonitis; 11 January, 1991, at Orlando, FL, U.S.A.; 1991. pp. 47–50. [Google Scholar]
  59. Fiscus S.A., Teramoto Y.A. Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J. Virol. 1987;61:2607–2613. doi: 10.1128/jvi.61.8.2607-2613.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Fiscus S.A., Teramoto Y.A. Functional differences in the peplomer glycoproteins of feline coronavirus isolates. J. Virol. 1987;61:2655–2657. doi: 10.1128/jvi.61.8.2655-2657.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Fiscus S.A., Rivoire B.L., Teramoto Y.A. Epitope-specific antibody responses to virulent and avirulent feline infectious peritonitis virus isolates. J. Clin. Micro. 1987;25:1529–1534. doi: 10.1128/jcm.25.8.1529-1534.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Fleming J.O., Shubin R.A., Sussman M.A., Casteel N., Stohlman S.A. Monoclonal antibodies to the matrix (E1) glycoprotein of mouse hepatitis virus protect mice from encephalitis. Virology. 1989;168:162–167. doi: 10.1016/0042-6822(89)90415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Garwes D.J., Stewart F., Elleman C.J. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 1987;218:509–515. doi: 10.1007/978-1-4684-1280-2_66. [DOI] [PubMed] [Google Scholar]
  65. Gebauer F., Posthumus W.P.A., Correa I., Sune C., Smerdou C., Sanchez C.M., Lenstra J.A., Meloen R.H., Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991;183:225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Gerber J.D. Development and evaluation of an intranasal, temperature-sensitive FIPV vaccine. Proceedings of the symposium: new perspectives on prevention of feline infectious peritonitis; 11 January, 1991, at Orlando, FL, U.S.A.; 1991. pp. 37–46. [Google Scholar]
  67. Gerber J.D., Ingersoll J.D., Gast A.M., Christianson K.K., Selzer N.L., Landon R.M., Pfeiffer N.E., Sharpee R.L., Beckenhauer W.H. Protection against feline infectious peritonitis by intranasal inoculation of a temperature-sensitive FIPV vaccine. Vaccine. 1990;8:536–542. doi: 10.1016/0264-410X(90)90004-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Gimenez H.B., Keir H.M., Cash P. In vitro enhancement of respiratory syncytial virus infection of U937 cells by human sera. J. Gen. Virol. 1989;70:89–96. doi: 10.1099/0022-1317-70-1-89. [DOI] [PubMed] [Google Scholar]
  69. Goitsuka R., Hirota Y., Hasegawa A., Tomoda I. Release of interleukin 1 from peritoneal cells of cats with feline infectioous peritonitis. Jpn. J. Vet. Sci. 1987;49:811–818. doi: 10.1292/jvms1939.49.811. [DOI] [PubMed] [Google Scholar]
  70. Goitsuka R., Ohaski T., Ono K., Yasukawa K., Koishibara Y., Fukui H., Ohsugi Y., Hasegawa A. IL-6 activity in feline infectious peritonitis. J. Immunol. 1990;144:2599–2603. [PubMed] [Google Scholar]
  71. Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. Coronavirus genome: prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989;17:4847–4861. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Halstead S.B. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 1979;140:527–533. doi: 10.1093/infdis/140.4.527. [DOI] [PubMed] [Google Scholar]
  73. Halstead S.B. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev. Inf. Dis. 1989;11:S830–S839. doi: 10.1093/clinids/11.supplement_4.s830. [DOI] [PubMed] [Google Scholar]
  74. Halstead S.B., Shotwell H., Casals J. Studies of the pathogenesis of denque infection in monkeys. II. Clinical laboratory responses to heterologous infection. J. Infect. Dis. 1973;128:15–22. doi: 10.1093/infdis/128.1.15. [DOI] [PubMed] [Google Scholar]
  75. Halstead S.B., Venkateshan C.N., Gentry M.K., Larsen L.K. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J. Immunol. 1984;132:1529–1532. [PubMed] [Google Scholar]
  76. Hawkes R.A. Enhancement of infectivity of arboviruses by specific antisera produced in domestic fowls. Australian J. Exp. Biol. Med. Sci. 1964;42:465–482. doi: 10.1038/icb.1964.44. [DOI] [PubMed] [Google Scholar]
  77. Hayshi T., Sasaki N., Ami Y., Fujiwara K. Role of thymus-dependent lymphocytes and antibodies in feline infectious peritonitis after oral infection. Jpn. J. Vet. Sci. 1983;45:759–766. doi: 10.1292/jvms1939.45.759. [DOI] [PubMed] [Google Scholar]
  78. Hayashi T., Watabe Y., Nakayama H., Fujiwara K. Enteritis due to feline infectious peritonitis virus. Jpn. J. Vet. Sci. 1982;44:97–106. doi: 10.1292/jvms1939.44.97. [DOI] [PubMed] [Google Scholar]
  79. Hayashi T., Watabe Y., Takenouchi T., Fujiwara K. Role of circulating antibodies in feline infectious peritonitis after oral infection. Jpn. J. Vet. Sci. 1983;5:487–494. doi: 10.1292/jvms1939.45.487. [DOI] [PubMed] [Google Scholar]
  80. Hoffman M.A., Sethna P.B., Brian D.A. Bovine coronavirus mRNA replication continues through persistent infection in cell culture. J. Virol. 1990;64:4108–4114. doi: 10.1128/jvi.64.9.4108-4114.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Hogue B.G., Kienzle T.E., Brian D.A. Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J. Gen. Virol. 1989;70:345–352. doi: 10.1099/0022-1317-70-2-345. [DOI] [PubMed] [Google Scholar]
  82. Hohdatsu T., Nakamura M., Ishizuka Y., Yamada H., Koyama H. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch. Virol. 1991;120:207–217. doi: 10.1007/BF01310476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Hohdatsu T., Okada S., Koyama H. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch. Virol. 1991;117:85–95. doi: 10.1007/BF01310494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Hohdatsu T., Sasamoto T., Okada S., Koyama H. Antigenic analysis of feline coronaviruses with monoclonal antibodies (mAbs): preparation of mAbs which discriminate between FIPV strain 79-1146 and FECV strain 1683. Vet. Microbiol. 1991;28:13–24. doi: 10.1016/0378-1135(91)90096-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Holmes K. Coronavirus replication. In: Fields B.N., editor. Virology. Raven Press; New York: 1985. pp. 1331–1343. [Google Scholar]
  86. Holzworth J. Some important disorders of the cat. Cornell Vet. 1963;53:157–160. [PubMed] [Google Scholar]
  87. Homsy J., Meyer M., Levy J.A. Serum enhancement of human immunodeficiency virus (HIV) infection correlates with disease in HIV-infected individuals. J. Virol. 1990;64:1437–1440. doi: 10.1128/jvi.64.4.1437-1440.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Homsy J., Meyer M., Tateno M., Clarkson S., Levy J.A. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989;244:1357–1360. doi: 10.1126/science.2786647. [DOI] [PubMed] [Google Scholar]
  89. Horzinek M.C., Ederveen J., Egberink H., Jacobse-Geels H.E.L., Niewold T., Prins J. Virion polypeptide specificity of immune complexes and antibodies in cats inoculated with feline infectious peritonitis virus. Am. J. Vet. Res. 1986;47:754–761. [PubMed] [Google Scholar]
  90. Horzinek M.C., Lutz H., Pedersen N.C. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses. Infect. Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Hoshino Y., Scott F.W. Replication of feline infectious peritonitis virus in organ cultures of feline tissue. Cornell Vet. 1978;68:411–417. [PubMed] [Google Scholar]
  92. Hoshino Y., Scott F.W. Coronavirus-like particles in the feces of normal cats. Arch. Virol. 1980;63:147–152. doi: 10.1007/BF01320772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Hoskins J.D. Coronavirus infection in cats. Compendium on Continuing Education for the Practicing Veterinarian. 1991;13:567–586. [Google Scholar]
  94. Inada T., Mims C.A. In antigens and Fc receptors of mouse peritoneal macrophages as determinants of susceptibility to lactate dehydrogenase virus. J. Gen. Virol. 1985;66:1469–1477. doi: 10.1099/0022-1317-66-7-1469. [DOI] [PubMed] [Google Scholar]
  95. Inada T., Chong K.T., Mims C.A. Enhancing antibodies, macrophages and virulence in mouse cytomegalovirus infection. J. Gen. Virol. 1985;66:871–878. doi: 10.1099/0022-1317-66-4-871. [DOI] [PubMed] [Google Scholar]
  96. Ingersoll J.D., Wylie D.E. Comparison of serologic assays for measurement of antibody to coronavirus in cats. Am. J. Vet. Res. 1988;49:1472–1479. [PubMed] [Google Scholar]
  97. Ingersoll J.D., Wylie D.E. Identification of viral antigens that induce antibody responses on exposure to coronaviruses. Am. J. Vet. Res. 1988;49:1467–1471. [PubMed] [Google Scholar]
  98. Jacobs L., De Groot R.J., Van Der Zeijst B.A.M., Horzinek M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonits virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Jacobse-Geels H.E., Daha M.R., Horzinek M.C. Isolation and characterization of feline C3 and evidence for the immune complex pathogenesis of feline infectious peritonitis. J. Immunol. 1980;125:1606–1610. [PubMed] [Google Scholar]
  100. Jacobse-Geels H.E., Daha M.R., Horzinek M.C. Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. Am. J. Vet. Res. 1982;43:666–670. [PubMed] [Google Scholar]
  101. Jolly P.E., Huso D.L., Sheffer D., Narayan O. Modulation of lentivirus replication by antibodies: Fc portion of immunoglobulin molecule is essential for enhancement of binding, internalization, and neutralization of visna virus in macrophages. J. Virol. 1989;63:1811–1813. doi: 10.1128/jvi.63.4.1811-1813.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. King A.A., Sands J.J., Porterfield J.S. Antibody-mediated enhancement of rabies virus infection in a mouse macrophage cell line (P388D1) J. Gen. Virol. 1984;65:1091–1093. doi: 10.1099/0022-1317-65-6-1091. [DOI] [PubMed] [Google Scholar]
  103. Koch G., Hartog L., Kant A., Van Roozelaar D.J. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. Gen. Virol. 1990;71:1929–1935. doi: 10.1099/0022-1317-71-9-1929. [DOI] [PubMed] [Google Scholar]
  104. Konings D.A.M., Bredenbeek P.J., Noten J.F.H., Hogeweg P., Spaan W.J.M. Differential premature termination of transcription as a proposed mechanism for the regulation of coronavirus gene expression. Nucleic Acids Res. 1988;16:10849–10860. doi: 10.1093/nar/16.22.10849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Kooi C., Cervin M., Anderson R. Differentiation of acid-pH-dependent and -non-dependent entry pathways for mouse hepatitis virus. Virology. 1991;180:108–119. doi: 10.1016/0042-6822(91)90014-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Koopmans M., Van Wuijckhusie-Sjouke L., Schukken Y.H., Cremers H., Horzinek M.C. Association of diarrhea in cattle with torovirus infections on farms. Am. J. Vet. Res. 1991;52:1769–1773. [PubMed] [Google Scholar]
  107. Krilov L.R., Anderson L.J., Marcoux L., Bongura V.R., Wedgewood J.F. Antibody-mediated enhancement of respiratory syncytial virus infection in two monocyte/macrophage cell lines. J. Infect. Dis. 1989;160:777–782. doi: 10.1093/infdis/160.5.777. [DOI] [PubMed] [Google Scholar]
  108. Kuo L., Harty J.T., Erickson L., Palmer G.A., Plagemann P.G.W. A nested set of eight RNAs is formed in macrophages infected with lactate dehydrogenase-elevating virus. J. Virol. 1991;65:5118–5123. doi: 10.1128/jvi.65.9.5118-5123.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kusters J.G., Jager E.J., Lenstra J.A., Koch G., Posthumus W.P.A., Meloen R.H., Van Der Zeijst B.A.M. Analysis of an immunodominant region of infectious bronchitis virus. J. Immunol. 1989;143:2692–2698. [PubMed] [Google Scholar]
  110. Lai M.M.C. Coronavirus: organization, replication and expression of genome. Annu. Rev. Microbiol. 1990;44:303–330. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  111. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lai M.M.C., Patton C.D., Stohlman S.A. Replacation of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length. J. Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Lamontagne L., Jolicoeur P. Mouse hepatitis virus 3-thymic cell interaction correlating with viral pathogenicity. J. Immunol. 1991;146:3152–3159. [PubMed] [Google Scholar]
  114. Lamontagne L., Decarie D., Dupuy J.M. Host cell resistance to mouse hepatitis virus type 3 is expressed in vitro in macrophages and lymphocytes. Viral Immunol. 1989;2:37–45. doi: 10.1089/vim.1989.2.37. [DOI] [PubMed] [Google Scholar]
  115. Lamontagne L., Descoteaux J.-P., Jolicoeur P. Mouse hepatitis virus 3 replication in T and B lymphocytes correlate with viral pathogenicity. J. Immunol. 1989;142:4458–4465. [PubMed] [Google Scholar]
  116. Laviada M.D., Videgain S.P., Moreno L., Alonso F., Enjuanes L., Escribano J.M. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: epitopes externally exposed. Virus Res. 1990;16:247–254. doi: 10.1016/0168-1702(90)90051-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Lee H.-J., Shieh C.-K., Gorbalenya A.E., Koonin E.V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M.M.C. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991;180:567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Levy G., Abecassis M. Activation of the immune coagulation system by murine hepatitis virus strain 3. Rev. Infect. Dis. 1989;11:S712–S721. doi: 10.1093/clinids/11.Supplement_4.S712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Levy G.A., Shaw R., Leibowitz J.L., Cole E. The immune response to mouse hepatitis virus: genetic variation in antibody response and disease. Adv. Exp. Med. Biol. 1984;173:345–364. doi: 10.1007/978-1-4615-9373-7_35. [DOI] [PubMed] [Google Scholar]
  120. Lewis R.M., Cosgriff T.M., Griffin B.Y., Rhoderick J., Jahrling P.B. Immune serum increases arenavirus replication in monocytes. J. Gen. Virol. 1988;69:1735–1739. doi: 10.1099/0022-1317-69-7-1735. [DOI] [PubMed] [Google Scholar]
  121. Lewis R.M., Morrill J.C., Jahrling P.B., Cosgriff T.M. Replication of hemorrhagic fever viruses in monocytic cells. Rev. Infect. Dis. 1989;11:S736–S742. doi: 10.1093/clinids/11.supplement_4.s736. [DOI] [PubMed] [Google Scholar]
  122. Littaua R., Kurane I., Ennis F.A. Human IgG Fc receptor II mediates antibody-dependent enhancement of denque virus infection. J. Immunol. 1990;144:3183–3186. [PubMed] [Google Scholar]
  123. Liu D.X., Cavanaugh D., Green P., Inglis S.C. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology. 1991;184:531–544. doi: 10.1016/0042-6822(91)90423-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Machamer C.E., Mentone S.A., Rose J.K., Farquhar M.G. Vol. 87. 1990. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex; pp. 6944–6948. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Mady B.J., Erbe D.V., Kurane I., Fanger M.W., Ennis F.A. Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fcγ receptors. J. Immunol. 1991;147:3139–3144. [PubMed] [Google Scholar]
  126. Mair T.S., Taylor F.G.R., Harbour D.A., Pearson G.R. Concurrent cryptosporidium and coronavirus infections in an Arabian foal with combined immunodeficiency syndrome. Vet. Rec. 1990;126:127–130. [PubMed] [Google Scholar]
  127. Makino S., Lai M.M.C. Evolution of the 5′ -end of genomic RNA of murine coronavisuses during passage in vitro. Virology. 1989;169:227–232. doi: 10.1016/0042-6822(89)90060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Makino S., Lai M.M.C. High-frequency leader sequence switching during corona-virus defective interfering RNA replication. J. Virol. 1989;63:5285–5292. doi: 10.1128/jvi.63.12.5285-5292.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Makino S., Fleming J.O., Keck J.G., Stohlman S.A., Lai M.M.C. RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. Proc. Nat. Acad. Sci. USA. 1987;84:6567–6571. doi: 10.1073/pnas.84.18.6567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Makino S., Keck J.G., Stohlman S.A., Lai M.M.C. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986;57:729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Makino S., Stohlman S.A., Lai M.M.C. Vol. 83. 1986. Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription; pp. 4204–4208. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Makino S., Yokomori K., Lai M.M.C. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. J. Virol. 1990;64:6045–6053. doi: 10.1128/jvi.64.12.6045-6053.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. McIntosh K. Coronaviruses. In: Fields B.N., editor. Virology. Raven Press; New York: 1985. pp. 1323–1330. [Google Scholar]
  134. Mogensen S.C. Genetic aspects of macrophage involvement in natural resistance to virus infections. Immunol. Lett. 1985;11:219–224. doi: 10.1016/0165-2478(85)90171-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Montefiori D.C., Murphey-Corb M., Desrosiers R.C., Daniel M.D. Complement-mediated, infection-enhancing antibodies in plasma from vaccinated macaques before and after inoculation with live simian immunodeficiency virus. J. Virol. 1990;64:5223–5225. doi: 10.1128/jvi.64.10.5223-5225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Montefiori D.C., Robinson W.E., Jr., Hirsch V.M., Modliszeski A., Mitchell W.M., Johnson P.R. Antibody-dependent enhancement of simian immunodeficiency virus (SIV) infection in vitro by plasma from SIV-infected rhesus macaques. J. Virol. 1990;64:113–119. doi: 10.1128/jvi.64.1.113-119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Morahan P.S., Connor J.R., Leary K.R. Viruses and the versatile macrophage. Brit. Med. Bull. 1985;41:15–21. doi: 10.1093/oxfordjournals.bmb.a072017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Morens D.M., Halstead S.B. Disease severity-related antigenic differences in dengue 2 strains detected by dengue 4 monoclonal antibodies. J. Med. Virol. 1987;22:169–174. doi: 10.1002/jmv.1890220208. [DOI] [PubMed] [Google Scholar]
  139. Morens D.M., Halstead S.B. Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J. Gen. Virol. 1990;71:2909–2914. doi: 10.1099/0022-1317-71-12-2909. [DOI] [PubMed] [Google Scholar]
  140. Morens D.M., Venkateshan C.N., Halstead S.B. Dengue 4 virus monoclonal antibodies identify that mediate immune infection enhancement of dengue 2 viruses. J. Gen. Virol. 1987;68:91–98. doi: 10.1099/0022-1317-68-1-91. [DOI] [PubMed] [Google Scholar]
  141. Muir P., Harbour D.A., Gruffydd-Jones T.J., Howard P.E., Hopper C.D., Gruffydd-Jones E.A.D., Broadhead H.M., Clarke C.M., Jones M.E. A clinical and microbiological study of cats with protruding nictitating membranes and diarrhoea: isolation of a novel virus. Vet. Rec. 1990;127:324–330. [PubMed] [Google Scholar]
  142. O'Brien S.J., Roelke M., Marker L., Newman A., Winkler C.A., Meltzer D., Colly L., Evermann J.F., Bush M., Wildt D.E. Genetic basis of the species vulnerability in the cheetah. Science. 1985;227:1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  143. Ochiai H., Kurokawa M., Hayashi K., Niwayama S. Antibody-mediaed growth of influenza A NWS virus in macrophagelike cell line P388D1. J. Virol. 1988;62:20–26. doi: 10.1128/jvi.62.1.20-26.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Ochiai H., Kurokawa M., Kuroki Y., Niwayama S. Infection enhancement of influenza A H1 subtype viruses in macrophage-like P388D1 cells by cross-reactive antibodies. J. Med. Virol. 1990;30:258–265. doi: 10.1002/jmv.1890300406. [DOI] [PubMed] [Google Scholar]
  145. Ochiai H., Kurokawa M., Matsui S., Yamamoto T., Kuroli Y., Kishimoto C., Shiraki K. Infection enhancement of influenza A NWS virus in primary murine macrophages by anti-hemagglutinin monoclonal antibody. J. Med. Virol. 1992;36:217–221. doi: 10.1002/jmv.1890360312. [DOI] [PubMed] [Google Scholar]
  146. Olezak E.L., Perlman S., Leibowitz J.L. MHV S peplomer protein expressed by a recombinant vaccinia virua vector exhibits IgG Fc-receptor activity. Virology. 1992;186:122–132. doi: 10.1016/0042-6822(92)90066-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Olsen C.W., Scott F.W. Feline infectious peritonitis vaccination-past and present F. Feline Health Topics. 1991;6:1–4. [Google Scholar]; Olsen C.W., Scott F.W. Feline infectious peritonitis vaccination-past and present. Feline Health Topics. 1991;6:8. [Google Scholar]
  148. Olsen, C.W. and Scott, F.W., 1992. Unpublished data.
  149. Olsen C.W., Corapi W.V., Jacobson R.H., Simkins R.A., Saif L.J., Scott F.W. Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. J. Gen. Virol. 1993 doi: 10.1099/0022-1317-74-4-745. in press. [DOI] [PubMed] [Google Scholar]
  150. Olsen C.W., Corapi W.V., Ngichabe C.K., Baines J.D., Scott F.W. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J. Virol. 1992;66:956–965. doi: 10.1128/jvi.66.2.956-965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Olsen, C.W., Corapi, W.V. and Scott, F.W., 1992c. Unpublished data.
  152. O'Reilly K.J., Fishman B., Hitchcock L.M. Feline infectious peritonitis: Isolation of a coronavirus. Vet. Rec. 1979;104:348. doi: 10.1136/vr.104.15.348. [DOI] [PubMed] [Google Scholar]
  153. O'Toole D., Brown I., Bridges A., Cartwright S.F. Pathogenicity of experimental infection with “pneumotropic” porcine coronavirus. Res. Vet. Sci. 1989;47:23–29. doi: 10.1016/S0034-5288(18)31226-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Page K.W., Mawditt K.L., Britton P. Sequence comparison of ther 5′ end of mRNA 3 from transmissible gastroenteritis virus and porcine respiratory coronavirus. J. Gen. Virol. 1991;72:579–587. doi: 10.1099/0022-1317-72-3-579. [DOI] [PubMed] [Google Scholar]
  155. Parker M.M., Masters P.S. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology. 1990;179:463–468. doi: 10.1016/0042-6822(90)90316-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Payne H.R., Storz J., Henk W.G. Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors. Arch. Virol. 1990;114:175–189. doi: 10.1007/BF01310747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Pedersen N.C. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonus peritoneal cell cultures. Am. J. Vet. Res. 1976;37:567–572. [PubMed] [Google Scholar]
  158. Pedersen N.C. Serologic studies of naturally occuring feline infectious peritonitis. Am. J. Vet. Res. 1976;37:1449–1453. [PubMed] [Google Scholar]
  159. Pedersen N.C. Vol. 45. 1978. Feline infectious peritonitis; pp. 142–146. (Proceedings of the annual meeting of the American Animal Hospital Association). [Google Scholar]
  160. Pedersen N.C. Feline infectious peritonitis and feline enteric coronavirus infections. Part 1: feline enteric coronaviruses. Feline Practice. 1983;13:13–19. [Google Scholar]
  161. Pedersen N.C. Feline infectious peritonitis and feline enteric coronavirus infections. Part 2: feline infectious peritonitis. Feline Practice. 1983;13:5–20. [Google Scholar]
  162. Pedersen N.C. Feline infectious peritonitis. In: Pedersen N.C., editor. Feline infectious diseases. American Veterinary Publications; Santa Barbara, CA: 1988. pp. 45–59. [Google Scholar]
  163. Pedersen N.C., Black J.W. Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus. Am. J. Vet. Res. 1983;44:229–234. [PubMed] [Google Scholar]
  164. Pedersen N.C., Boyle J.F. Immunologic phenomena in the effusive form of feline infectious peritonitis. Am. J. Vet. Res. 1980;41:868–876. [PubMed] [Google Scholar]
  165. Pedersen N.C., Floyd K. Experimental studies with three new strains of feline infectious peritonitis virus: FIPV-UCD2, FIPV-UCD3, and FIPV-UCD4. Compendium on Continuing Education for the Practicing Veterinarian. 1985;7:1001–1011. [Google Scholar]
  166. Pedersen N.C., Boyle J.F., Floyd K. Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 1981;2:363–367. [PubMed] [Google Scholar]
  167. Pedersen N.C., Boyle J.F., Floyd K., Fudge A., Barker J. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 1981;42:368–377. [PubMed] [Google Scholar]
  168. Pedersen N.C., Evermann J.F., McKeirnan A.J., Ott R.L. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am J. Vet. Res. 1984;45:2580–2585. [PubMed] [Google Scholar]
  169. Pedersen N.C., Ward J., Mengeling W.L. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Pensaert M., Callebaut P., Vergote J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Quarterly. 1986;8:257–261. doi: 10.1080/01652176.1986.9694050. [DOI] [PubMed] [Google Scholar]
  171. Pieris J.S.M., Porterfield J.S. Antibody-dependent enhancement of plaque formation on cell lines of macrophage origin-a sensitive assay for antiviral antibody. J. Gen. Virol. 1981;57:119–125. doi: 10.1099/0022-1317-57-1-119. [DOI] [PubMed] [Google Scholar]
  172. Porterfield J.S. Antibody-dependent enhancement of viral infectivity. Adv. Virus Res. 1986;31:335–355. doi: 10.1016/s0065-3527(08)60268-7. [DOI] [PubMed] [Google Scholar]
  173. Posthumus W.P.A., Lenstra J.A., Schaaper W.M.M., Van Nieuwstadt A.P., Enjuanes L., Meloen R.H. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J. Virol. 1990;64:3304–3309. doi: 10.1128/jvi.64.7.3304-3309.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Pulford D.J., Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses. Virus Res. 1990;18:203–218. doi: 10.1016/0168-1702(91)90019-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Pulford D.J., Britton P. Intracellular processing of the porcine coronavirus transmissible gastroenteritis virus spike protein expressed by recombinant vaccinia virus. Virology. 1991;182:765–773. doi: 10.1016/0042-6822(91)90617-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteristis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  177. Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
  178. Reynolds D.J., Garwes D.J. Virus isolation and serum antibody responses after infection of cats with transmissible gastroenteritis virus. Arch. Virol. 1979;60:161–166. doi: 10.1007/BF01348032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Robinson W.E., Jr., Gorny M.W., Xu J.-Y., Mitchell W.M., Zolla-Pazner S. Two immunodominant domains of gp41 bind antibodies which enhance human immunodeficiency virus type 1 infection in vitro. J. Virol. 1991;65:4169–4176. doi: 10.1128/jvi.65.8.4169-4176.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Robinson W.E., Jr., Kawamura T., Gorny M.K., Lake D., Xu J.-Y., Matsumoto Y., Sugano T., Masuho Y., Mitchell W.M., Hersh E., Zolla-Pazner S. Vol. 87. 1990. Human monoclonal antibodies to the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 enhance HIV-1 infection in vitro; pp. 3185–3189. (Proc. Nat. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Robinson W.E., Jr., Kawamura T., Lake D., Masuho Y., Mitchell W.M., Hersch E.M. Antibodies to the primary immunodominant domain of human immunodeficiency virus type 1 (HIV-1) glycoprotein pg41 enhance HIV-1 infection in vitro. J. Virol. 1990;64:5301–5305. doi: 10.1128/jvi.64.11.5301-5305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Robinson W.E., Jr., Montefiori D.C., Gillispie D.H., Mithchell W.M. Complement-mediated, antibody-dependent enhancement of HIV-1 infection in vitro is characterized by increased protein and RNA syntheses and infectious virus release. J. Acquir. Immune Defic. Syndr. 1989;2:33–42. [PubMed] [Google Scholar]
  183. Robinson W.E., Jr., Montefiori D.C., Mitchell W.M. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet. 1988;12:790–794. doi: 10.1016/s0140-6736(88)91657-1. [DOI] [PubMed] [Google Scholar]
  184. Robinson W.E., Jr., Montefiori D.C., Mitchell W.M. Will antibody- dependent enhancement of HIV-1 infection be a problem with AIDS vaccines? Lancet. 1988;12:830–831. doi: 10.1016/s0140-6736(88)91695-9. [DOI] [PubMed] [Google Scholar]
  185. Robinson W.E., Jr., Montefiori D.C., Mitchell W.M. Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD4 and complement receptors. Virology. 1990;175:600–604. doi: 10.1016/0042-6822(90)90449-2. [DOI] [PubMed] [Google Scholar]
  186. Robinson W.E., Jr., Montefiori D.C., Mitchell W.M., Prince A.M., Alter H.J., Dressman G.R., Eichberg J.W. Vol. 86. 1989. Antibody-dependent enhancement of human immunodeficiency virus type 1 (HIV-1) infection in vitro by serum from HIV-1-infected and passively immunized chimpanzees; pp. 4710–4714. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Rosen L. Disease exacerbation caused by sequential dengue infections: myth or reality? Rev. Inf. Dis. 1989;11:S840–S842. doi: 10.1093/clinids/11.supplement_4.s840. [DOI] [PubMed] [Google Scholar]
  188. Routledge E., Stauber R., Pfleiderer M., Siddell S.G. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 1991;65:254–262. doi: 10.1128/jvi.65.1.254-262.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Sanchez C.M., Jimenez G., Laviada M.D., Correa I., Sune C., Bullido M.J., Gebauer F., Smerdou C., Callebaut P., Escribano J.M., Enjuanes L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Sawicki S.G., Sawicki D.L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J. Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Schaad M.C., Stohlman S.A., Egbert J., Lum K., Fu K., Wei T., Jr., Baric R.S. Genetics of mouse hepatitis virus transcription: identification of cistrons which may function in positive and negative strand RNA synthesis. Virology. 1990;177:634–645. doi: 10.1016/0042-6822(90)90529-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Schlesinger J.J., Brandriss M.W. Antibody-mediated infection of macrophages and macrophage-like cell lines with 17D-yellow fever virus. J. Med. Virol. 1981;8:103–117. doi: 10.1002/jmv.1890080204. [DOI] [PubMed] [Google Scholar]
  193. Schlesinger J.J., Brandriss M.W. Growth of 17D yellow fever virus in a macrophage-like cell line, U937: role of Fc and viral receptors in antibody-mediated infection. J. Immunol. 1981;127:659–665. [PubMed] [Google Scholar]
  194. Schultze B., Gross H.-J., Brossmer R., Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 1991;65:6232–6237. doi: 10.1128/jvi.65.11.6232-6237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Scott F.W. Proceedings of the 12th KalKan Symposium. 1989. Update on FIP; pp. 43–47. [Google Scholar]
  196. Scott F.W. Feline infectious peritonitis: transmission and epidemiology. Proceedings of the symposium: new perspectives on prevention of feline infectious peritonitis; 11 January, 1991, at Orlando, FL, U.S.A.; 1991. pp. 8–13. [Google Scholar]
  197. Scott, F.W., 1992. Unpublished data.
  198. Scott F.W., Corapi W.V., Olsen C.W. Evaluation of the safety and efficacy of Primucell-FIPR vaccine. Feline Health Topics. 1992;7:6–8. [Google Scholar]
  199. Sethna P.B., Hoffman M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Sethna P.B., Hung S.-L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Shieh C.-K., Lee H.-J., Yokomori K., LaMonica N., Makino S., Lai M.M.C. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 1989;63:3729–3736. doi: 10.1128/jvi.63.9.3729-3736.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Snijder E.J., Den Boon J.A., Horzinek M.C., Spaan W.J.M. Comparison of the genome organization of toro- and coronaviruses: evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology. 1991;180:448–452. doi: 10.1016/0042-6822(91)90056-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Snijder E.J., Den Boon J.A., Spaan W.J.M., Weiss M., Horzinek M.C. Primary structure and post-translational processing of the Berne virus peplomer protein. Virology. 1990;178:355–363. doi: 10.1016/0042-6822(90)90332-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Snijder E.J., Horzinek M.C., Spaan W.J.M. A 3′-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. J. Virol. 1990;64:331–338. doi: 10.1128/jvi.64.1.331-338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Spaan W., Cavanaugh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  206. Sparkes A.H., Gruffydd-Jones T.J., Harbour D.A. Feline infectious peritonitis: a review of clinicopathological changes in 65 cases, and a critical assessment of their diagnostic value. Vet. Rec. 1991;129:209–212. doi: 10.1136/vr.129.10.209. [DOI] [PubMed] [Google Scholar]
  207. Stoddart C.A. Cornell University; Ithaca, NY: 1989. (PhD thesis). [Google Scholar]
  208. Stoddart C.A., Scott F.W. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J. Virol. 1989;63:436–440. doi: 10.1128/jvi.63.1.436-440.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Stoddart M.E., Gaskell C.J. Feline coronavirus infection. In: Chandler E.A., editor. Feline Medicine and Therapeutics. Blackwell Scientific Publications; Oxford: 1985. pp. 284–289. [Google Scholar]
  210. Stoddart M.E., Gaskell R.M., Harbour D.A., Gaskell C.J. Virus shedding and immune responses in cats inoculated with cell culture-adapted feline infectious peritonitis virus. Vet. Microbiol. 1988;16:145–158. doi: 10.1016/0378-1135(88)90039-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Stoddart M.E., Gaskell R.M., Harbour D.A., Pearson G.R. The sites of early viral replication in feline infectious peritonitis. Vet. Microbiol. 1988;18:259–271. doi: 10.1016/0378-1135(88)90092-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Stoddart M.E., Whicher J.T., Harbour D.A. Cats inoculated with feline infectious peritonitis virus exhibit a biphasic-acute phase plasma protein response. Vet. Rec. 1988;123:622–624. [PubMed] [Google Scholar]
  213. Stohlman S.A., Baric R.S., Nelson G.N., Soe L.H., Welter L.M., Deans R.J. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 1988;62:4288–4295. doi: 10.1128/jvi.62.11.4288-4295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Storz J., Herrler G., Snodgrass D.R., Hussain K.A., Zhang X.M., Clark M.A., Rott R. Monoclonal antibodies differentiate between the haemagglutinating and the receptor-destroying activities of bovine coronavirus. J. Gen. Virol. 1991;72:2817–2820. doi: 10.1099/0022-1317-72-11-2817. [DOI] [PubMed] [Google Scholar]
  215. Stuhler A., Wege H., Siddell S.G. Localization of antigenic sites on the surface glycoprotein of mouse hepatitis virus. J. Gen. Virol. 1991;72:1655–1658. doi: 10.1099/0022-1317-72-7-1655. [DOI] [PubMed] [Google Scholar]
  216. Sturman L.S., Holmes K.V. The novel glycoproteins of coronavirus. Trends Biochem. Sci. 1975;10:17–20. [Google Scholar]
  217. Sturman L.S., Holmes K.V. Characterization of a coronavirus. II. Glycoproteins of the viral envelope: tryptic peptide analysis. Virology. 1977;77:650–660. doi: 10.1016/0042-6822(77)90489-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. Adv. Virus Res. 1983;28:35–112. doi: 10.1016/S0065-3527(08)60721-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Sturman L.S., Ricard C.S., Holmes K.V. Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37°C correlates with virus aggregation and virus-induced fusion. J. Virol. 1990;64:3042–3050. doi: 10.1128/jvi.64.6.3042-3050.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Takase-Yoden S., Kikuchi T., Siddell S.G., Taguchi F. Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein. Virus Res. 1990;18:99–108. doi: 10.1016/0168-1702(91)90011-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Takeda A., Sweet R.W., Ennis F.A. Two receptors are required for antibody-dependent enhancement of human immunodeficiency virus type 1 infection: CD4 and FcγR. J. Virol. 1990;64:5605–5610. doi: 10.1128/jvi.64.11.5605-5610.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Takeda A., Tuazon C.U., Ennis F.A. Antibody-dependent enhanced infection of HIV-1 via Fc receptor-mediated entry. Science. 1988;242:580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
  223. Takenouchi T., Ami Y., Hayashi T., Fujiwara K. Role of T cells in feline infectious peitonitis virus infection of suckling mice. Jpn. J. Vet. Sci. 1985;47:465–468. doi: 10.1292/jvms1939.47.465. [DOI] [PubMed] [Google Scholar]
  224. Tupper G.T., Evermann J.F., Russell R.G., Thouless M.E. Antigenic and biological diversity of feline coronaviruses: feline infectious peritonitis and feline enteric coronavirus. Arch. Virol. 1987;96:29–38. doi: 10.1007/BF01310988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Van Der Most R.G., Bredenbeek P.J., Spaan W.J.M. A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991;65:3219–3226. doi: 10.1128/jvi.65.6.3219-3226.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Van Nieuwstadt A.P., Pol J.M.A. Isolation of a TGE virus-related respiratory coronavirus causing fatal pneumonia in pigs. Vet. Rec. 1989;124:43–44. doi: 10.1136/vr.124.2.43. [DOI] [PubMed] [Google Scholar]
  227. Vennema H., DeGroot R.J., Harbour D.A., Dalderup M., Gruffydd-Jones T., Horzinek M.C., Spaan W.J.M. Early death after feline infectious peritonitis challange due to recombinant vaccinaia virus immunization. J. Virol. 1990;64:1407–1409. doi: 10.1128/jvi.64.3.1407-1409.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Vennema H., De Groot R.J., Harbour D.A., Horzinek M.C., Spaan W.J.M. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1991;181:327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Verbeek A., Tijssen P. Sequence analysis of the turkey enteric coronavirus nucleocapsid and membrane protein genes: a close genomic relationship with bovine coronavirus. J. Gen. Virol. 1991;72:1659–1666. doi: 10.1099/0022-1317-72-7-1659. [DOI] [PubMed] [Google Scholar]
  231. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Ward J.M. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology. 1970;41:191–194. doi: 10.1016/0042-6822(70)90070-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Ward J.M., Gribble D.H., Dungworth D.L. Feline infectious peritonitis: experimental evidence for its multiphasic nature. Am. J. Vet. Res. 1974;35:1271–1275. [PubMed] [Google Scholar]
  234. Wege H., Siddell S., Ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  235. Weismiller D.G., Sturman L.S., Buchmeier M.J., Fleming J.O., Holmes K.V. Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identity two subunits and detect a commformational change in the subunit released under mild alkaline conditions. J. Virol. 1990;64:3051–3055. doi: 10.1128/jvi.64.6.3051-3055.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Weiss R.C., Cox N.R. Delayed-type hypersensitivity skin responses associated with feline infectious peritonitis in two cats. Res. Vet. Sci. 1988;44:396–398. [PubMed] [Google Scholar]
  237. Weiss R.C., Cox N.R. Evaluation of immunity to feline infectious peritonitis in cats with cutaneous viral-induced delayed hypersensitivity. Vet. Immunol. Immunopath. 1989;21:293–309. doi: 10.1016/0165-2427(89)90038-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Weiss R.C., Oostrom-Ram T. Inhibitory effects of ribavirin alone or combined with human alpha interferon on feline infectious peritonitis virus replication in vitro. Vet. Microbiol. 1989;20:255–265. doi: 10.1016/0378-1135(89)90049-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Weiss R.C., Scott F.W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparison with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 1981;4:175–189. doi: 10.1016/0147-9571(81)90003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Weiss R.C., Scott F.W. Pathogenesis of feline infectious peritonitis: nature and development of viremia. Am. J. Vet. Res. 1981;42:382–390. [PubMed] [Google Scholar]
  241. Weiss R.C., Scott F.W. Pathogenesis of feline infectious peritonitis: pathologic changes and immunofluorescence. Am. J. Vet. Res. 1981;42:2036–2048. [PubMed] [Google Scholar]
  242. Weiss R.C., Toivio-Kinnucan M. Inhibition of feline infectious peritonitis virus replication by recombinant human leukocyte (alpha) inferferon and feline fibroblastic (beta) interferon. Am. J. Vet. Res. 1988;49:1329–1335. [PubMed] [Google Scholar]
  243. Weiss R., Vaugh D. RES 1987 Annual Meeting Abstracts. 1987. Elevated leukotriene B4 and prostaglandin E2 plasma levels in cats experimentally infected with feline coronavirus; p. 393. [Google Scholar]
  244. Weiss R.C., Cox N.R., Oostrom-Ram T. Effect of interferon or Propionibacterium acnes on the course of experimentally induced feline infectious peritonitis in specific-pathogen-free cats and random source cats. Am. J. Vet. Res. 1990;51:726–733. [PubMed] [Google Scholar]
  245. Weiss R.C., Dodds W.J., Scott F.W. Disseminated intravascular coagulation in experimentally induced feline infectious peritonitis. Am. J. Vet. Res. 1980;41:663–671. [PubMed] [Google Scholar]
  246. Werner A., Winskowsky G., Kurth R. Soluble CD4 enhances simian immunodeficiency virus SIVagm infection. J. Virol. 1990;64:6252–6256. doi: 10.1128/jvi.64.12.6252-6256.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Wesley R.D., Woods R.D., Cheung A.K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1990;64:4761–4766. doi: 10.1128/jvi.64.10.4761-4766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Wesley R.D., Woods R.D., Cheung A.K. Genetic analysis of porcine respiratory coroanvirus, an attenuated variant of transmissible gastroenteritis virus. J. Virol. 1991;65:3369–3373. doi: 10.1128/jvi.65.6.3369-3373.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Williams R.K., Jiang G.-S., Holmes K.V. Vol. 88. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins; pp. 5533–5536. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Winkler C., Schultz A., Cevario S., O'Brien S.J. Genetic characterization of FLA, the cat major histocompabibility complex. Proc. Nat. Acad. Sci. USA. 1989;86:943–947. doi: 10.1073/pnas.86.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Wolfe L.G., Griesemer R.A. Feline infectious peritonitis. Pathol. Vet. 1966;3:255–270. doi: 10.1177/030098586600300309. [DOI] [PubMed] [Google Scholar]
  252. Woods R.D., Pedersen N.C. Cross-protection studies between feline infectious peritonitis and porcine transmissible gastroenteritis viruses. Vet. Microbiol. 1979;4:11–16. [Google Scholar]
  253. Woods R.D., Cheville N.F., Gallagher J.E. Lesions in the small intestine of newborn pigs inoculated with porcine, feline, and canine coronaviruses. Am. J. Vet. Res. 1981;42:1163–1169. [PubMed] [Google Scholar]
  254. Yoo D., Parker M.D., Song J., Cox G.J., Deregt D., Babiuk L.A. Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology. 1991;183:91–98. doi: 10.1016/0042-6822(91)90121-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Zhang X., Kousoulas K.G., Storz J. Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology. 1991;183:397–404. doi: 10.1016/0042-6822(91)90154-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES