Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;13(1):27–34. doi: 10.1016/0378-1135(87)90095-2

Characterisation of rotavirus isolates from sub-clinically infected calves by genome profile analysis

DH Pocock 1
PMCID: PMC7117224  PMID: 3027953

Abstract

Rotaviruses isolated from 43 sub-clinically infected calves from a single farm were analysed by genome profile analysis. The isolates showed genomic variation and eight different profiles were observed, including one which was atypical for Group A rotaviruses.

The 3′ terminal labelling method for the analysis of genome profiles used in this study required only 1 ng of viral RNA, an increase of 1000-fold in sensitivity over ethidium bromide staining for detecting all rotavirus genome segments. However, dual infections involving two rotaviruses with distinct profiles could not be detected if the concentrations of the viruses differed by > 10-fold.

References

  1. Barron-Romero B.L., Barreda-Gonzalez J., Doval-Ugalde R., Zermeno-Eguia Liz J., Huerta-Pena M. Asymptomatic rotavirus infections in day care centers. J. Clin. Microbiol. 1985;22:116–118. doi: 10.1128/jcm.22.1.116-118.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bridger J.C., Brown J.F. Development of immunity to porcine rotavirus in piglets protected from disease by bovine colostrum. Infect. Immun. 1981;31:906–910. doi: 10.1128/iai.31.3.906-910.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bridger J.C., Pocock D.H. Variation in virulence of bovine rotaviruses. J. Hyg., Camb. 1986;96:257–264. doi: 10.1017/s0022172400066031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bridger J.C., Woode G.N. Neonatal calf diarrhoea: identification of a reoviruslike (rotavirus) agent in faeces by immunofluorescence and immune electron microscopy. Br. Vet. J. 1975;131:528–535. [PubMed] [Google Scholar]
  5. Carpio M., Bellamy J.E.C., Babiuk L.A. Comparative virulence of different bovine rotavirus isolates. Can. J. Comp. Med. 1981;45:38–42. [PMC free article] [PubMed] [Google Scholar]
  6. Chrystie I.L., Totterdell B.M., Banatvala J.E. Asymptomatic endemic rotavirus infections in the newborn. Lancet. 1978;i:1176–1178. doi: 10.1016/S0140-6736(78)90967-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke I.N., McCrae M.A. A rapid and sensitive method for analysing the genome profiles of field isolates of rotavirus. J. Virol. Methods. 1981;2:203–209. doi: 10.1016/0166-0934(81)90010-0. [DOI] [PubMed] [Google Scholar]
  8. De Leeuw P.W., Ellens D.J., Straver P.J., Van Balken J.A.M., Moerman A., Baanvinger T. Rotavirus infections in calves in dairy herds. Res. Vet. Sci. 1980;19:135–141. doi: 10.1016/S0034-5288(18)32653-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gaillard R.K., Joklik W.K. Quantitation of the relatedness of Reovirus serotypes 1,2 and 3 at the gene level. Virology. 1982;123:152–154. doi: 10.1016/0042-6822(82)90302-6. [DOI] [PubMed] [Google Scholar]
  10. Herring A.J., Inglis N.F., Ojeh C.K., Snodgrass D.R., Menzies J.D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J. Clin. Microbiol. 1982;16:473–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kalica A.R., Sereno M.M., Mebus C.A., Chanock R.M., Kapikian A.Z. Comparison of human and animal rotaviruses by gel electrophoresis of viral RNA. Virology. 1978;87:247–255. doi: 10.1016/0042-6822(78)90130-7. [DOI] [PubMed] [Google Scholar]
  12. Kalica A.R., Greenberg H.B., Espejo R.T., Flores J., Wyatt R.G., Kapikian A.Z., Chanock R.M. Distinctive ribonucleic acid patterns of human rotavirus subgroups 1 and 2. Infect. Immun. 1981;33:958–961. doi: 10.1128/iai.33.3.958-961.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. McNulty M.S., Logan E.F. Longitudinal survey of rotavirus infection in calves. Vet. Rec. 1983;113:333–335. doi: 10.1136/vr.113.15.333. [DOI] [PubMed] [Google Scholar]
  15. Pedley S., Bridger J.C., Brown J.F., McCrae M.A. Molecular characterization of rotaviruses with distinct group antigens. J. Gen. Virol. 1983;64:2093–2101. doi: 10.1099/0022-1317-64-10-2093. [DOI] [PubMed] [Google Scholar]
  16. Reynolds D.J. University of Reading; Reading, U.K: 1983. The epidemiology of enteric virus infections of calves. (Ph.D. thesis). [Google Scholar]
  17. Reynolds D.J., Chasey D., Scott A.C., Bridger J.C. Evaluation of ELISA and electron microscopy for the detection of coronavirus and rotavirus in bovine faeces. Vet. Rec. 1984;114:397–401. doi: 10.1136/vr.114.16.397. [DOI] [PubMed] [Google Scholar]
  18. Rodger S.M., Holmes I.H. Comparison of the genomes of simian, bovine and human rotaviruses by gel electrophoresis and detection of genomic variation among bovine isolates. J. Virol. 1979;30:839–849. doi: 10.1128/jvi.30.3.839-846.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Snodgrass D.R., Wells P.W. Rotavirus infection in lambs: studies on passive protection. Arch. Virol. 1976;52:201–205. doi: 10.1007/BF01348017. [DOI] [PubMed] [Google Scholar]
  20. Snodgrass D.R., Herring A.J., Campbell I., Inglis J.M., Hargreaves F.D. Comparison of atypical rotaviruses from calves, piglets, lambs and man. J. Gen. Virol. 1984;65:909–914. doi: 10.1099/0022-1317-65-5-909. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES