Abstract
Monoclonal antibodies (Mabs) specific for the E1 and E2 surface glycoproteins of the transmissible gastroenteritis virus (TGEV) of swine were examined either alone or in combination to evaluate their potential value in protecting neonatal pigs against a lethal dose of TGEV. Cesarean-delivered colostrum-deprived (CDCD) piglets were given one pre-challenge dose of Mab and an equal dose of the same Mab at each successive feeding after challenge. In vivo challenge results demonstrated that neither Mabs given individually nor combinations of the Mabs were able to protect neonatal pigs against a lethal dose of TGEV. However, in parallel experiments, polyclonal antibodies from immune colostrum or serum were protective.
References
- Abou-Youssef M.H., Ristic M. Protective effect of immunoglobulins in serum and milk of sows exposed to tranmissible gastroenteritis virus. Can. J. Comp. Med. 1975;39:41–45. [PMC free article] [PubMed] [Google Scholar]
- Amtower W.C., Calhoon J.R. A beta-propiolactone sterilized milk formula for specific pathogen-free pigs. Lab. Anim. Care. 1964;14:382–387. [PubMed] [Google Scholar]
- Bohl E.H., Saif L.J. Passive immunity in transmissible gastroenteritis of swine: Immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes. Infect. Immun. 1975;11:23–32. doi: 10.1128/iai.11.1.23-32.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brian D.A., Hogue B., Lapps W., Potts B., Kapke P. Comparative structure of coronaviruses. In: Acres S.D., editor. Proceedings of the Fourth International Symposium on Neonatal Diarrhea; 3–5 October, 1983; Saskatoon, Canada: Veterinary Infectious Disease Organization; 1984. pp. 100–116. [Google Scholar]
- Correa I., Jimenez G., Sune C., Bullido M.J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
- Deschamps J.R., Hildreth J.E.K., Derp D., August J.T. A high-performance liquid chromatographic procedure for the purification of mouse monoclonal antibodies. Anal. Biochem. 1985;147:451–454. doi: 10.1016/0003-2697(85)90296-9. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Pocock D.H. The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol. 1975;29:25–34. doi: 10.1099/0022-1317-29-1-25. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978/1979;3:179–190. [Google Scholar]
- Greenwood F.C., Hunger W.M., Glover J.W. The preparation of 131I-labeled human growth hormone of high specific radioactivity. Biochem. J. 1963;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haelterman E.O. Vol. 1. 1963. Transmissible gastroenteritis of swine; pp. 615–618. (Proc. 17th World Vet. Congr., Hannover). [Google Scholar]
- Hu S., Bruszewski J., Smalling R., Browne J.K. Studies of TGEV spike protein gp195 expressed in E. coli and by a TGE-vaccinnia. Adv. Exp. Med. Biol. 1985;185:63–82. doi: 10.1007/978-1-4684-7974-4_4. [DOI] [PubMed] [Google Scholar]
- Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble W.A. Methods used to combat transmissible gastro-enteritis. Vet. Rec. 1964;76:1497–1498. [Google Scholar]
- Porter P., Allen W.D. Classes of immunoglobulins related to immunity in the pig: A review. J. Am. Vet. Med. Assoc. 1972;160:511–518. [PubMed] [Google Scholar]
- Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938;27:493–497. [Google Scholar]
- Stone S.S., Kemeny L.J., Woods R.D., Jensen M.T. Efficacy of isolated colostral IgA, IgG and IgM (A) to protect neonatal pigs against the coronavirus of transmissible gastroenteritis. Am. J. Vet. Res. 1977;38:1285–1288. [PubMed] [Google Scholar]
- Sturman L.S., Holmes K.V., Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 1980;33:449–462. doi: 10.1128/jvi.33.1.449-462.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Deusen R.A., Whetstone C.A. 1981. Practical aspects of producing and using anti-viral monoclonal antibodies as diagnostic reagents; pp. 211–218. (Am. Assoc. Vet. Lab. Diagn., 24th Annu. Proc.). [Google Scholar]
- Wesley R.D., Woods R.D. Identification of a 17000 molecular weight antigenic polypeptide in transmissible gastroenteritis virus-infected cells. J. Gen. Virol. 1986;67:1419–1425. doi: 10.1099/0022-1317-67-7-1419. [DOI] [PubMed] [Google Scholar]
- Woods R.D., Wesley R.D., Kapke P.A. Complement-dependent neutralization of transmissible gastroenteritis virus monoclonal antibodies. Adv. Exp. Med. Biol. 1987;218:493–500. doi: 10.1007/978-1-4684-1280-2_64. [DOI] [PubMed] [Google Scholar]
- Woods R.D., Wesley R.D., Kapke P.A. Neutralization of transmissible gastroenteritis virus by complement dependent monoclonal antibodies. Am. J. Vet. Res. 1988;49:300–304. [PubMed] [Google Scholar]