Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;34(3):259–271. doi: 10.1016/0378-1135(93)90016-Z

Detection of feline infectious peritonitis virus infection in cell cultures and peripheral blood mononuclear leukocytes of experimentally infected cats using a biotinylated cDNA probe

Mitzi L Martinez 1,, Richard C Weiss 1
PMCID: PMC7117255  PMID: 8384740

Abstract

A dot blot hybridization assay, using a biotinylated cDNA probe, was able to detect feline infectious peritonitis virus (FIPV) RNA in Felis catus whole fetus (fcwf-4) cells infected with the FIPV isolates DF2, 79-1146, UCDI, and UCD2. The probe cross-hybridized in the dot blot assay with nucleic acid of a closely related feline coronavirus, feline enteric coronavirus (FECV)-79-1683. To construct the probe, a 2.5 kilobase cDNA, prepared from FIPV-DF2 genomic RNA, was molecularly cloned. The recombinant cDNA clone was digested with the restriction endonuclease Rsa I, and an 870 basepair Rsa I fragment was isolated from vector DNA by agarose electrophoresis and glassmilk purification. This fragment was complementary to the 3′ three fourths of the nucleocapsid gene. The hybridization probe was prepared by random primed labeling in the presence of biotin-11-dUTP. Using an avidin-alkaline phosphatase conjugate and chemiluminescent substrate detection system, virus could be detected in as few as 3000 infected cells.

In an in vivo study, the probe was used to detect FIPV RNA in peripheral blood mononuclear leukocytes (PBML) isolated at various post-infection days (PID) from cats experimentally infected with the FIP-producing coronavirus isolate FIPV-79-1146 or FIPV-DF2. Viral RNA could be detected in as few as 12 000 PBML isolated from cats at PID 7 and in 50 000 PBML at PID 22. There was no consistent pattern, however, between hybridization results and prognosis or severity of disease at the time of sampling. Despite some cross-hybridization with FECV RNA, this probe should be useful for diagnosis of FIP, because cats infected with FECV most likely do not become viremic.

References

  1. August J.R. Feline infectious peritonitis: an immune-mediated coronavirus vasculitis. In: August J.R., Loar A.S., editors. Vol. 14. 1984. pp. 971–984. (Vet. Clin. North Am: Small Anim. Prac/Feline Med.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlough J.E. Serodiagnostic aids and management practice for feline retrovitrus and coronavirus infections. In: August J.R., Loar A.S., editors. Vol. 14. 1984. pp. 985–992. (Vet. Clin. North Am: Small Anim. Prac./Feline Med.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlough J.E. Cats, coronaviruses and coronavirus antibody tests. J. Sm. Anim. Pract. 1985;26:353–362. [Google Scholar]
  4. Barlough J.E., Stoddart C.A., Sorresso G.P., Jacobson R.H., Scott F.W. Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus. Lab. Anim. Sci. 1984;34:592–597. [PubMed] [Google Scholar]
  5. Britton P., Page K.W., Pulford D.J., Garwes D.J., Mawditt K., Stewart F., Parra F., Otin C.L., Alonso J.M., Carmenes R.S. Genomic organization of a virulent isolate of porcine transmissible gastroenteritis virus. In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Plenum Press; New York: 1990. pp. 357–364. [DOI] [PubMed] [Google Scholar]
  6. DeGroot R.J., Maduro J., Lenstra J.A., Horzinek M.C., van der Zeijst B.A.M., Spaan W.J. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
  7. DeGroot R.J., Ter Haar R.J., Horzinek M.C., van der Zeijst B.A.M. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79-1146. J. Gen. Virol. 1987;68:995–1002. doi: 10.1099/0022-1317-68-4-995. [DOI] [PubMed] [Google Scholar]
  8. DeGroot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertion. Virol. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evermann J.F., Baumgartener L., Ott R.L., Davis E.V., McKeirnan A.J. Characterization of a feline infectious peritonitis virus isolate. Vet. Pathol. 1981;18:256–265. doi: 10.1177/030098588101800214. [DOI] [PubMed] [Google Scholar]
  10. Evermann J.F., Heeney J.L., Roelke M.E., McKeiman A.J., O'Brien S.J. Biological and pathological consequences of feline infectious virus infection in the cheetah. Arch. Virol. 1988;102:155–171. doi: 10.1007/BF01310822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horzinek M.C., Osterhaus A.D.M.E. Feline infectious peritonitis: A worldwide serosurvey. Am. J. Vet. Res. 1979;40:1487–1492. [PubMed] [Google Scholar]
  12. Horzinek M.C., Osterhaus A.D.M.E., Ellens D.J. Feline infectious peritonitis virus. Zbl. Vet. Med. 1977;24:398–405. doi: 10.1111/j.1439-0450.1977.tb01013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horzinek M.C., Lutz H., Pedersen N.C. Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect. Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McKeirnan A.J., Evermann J.F., Hargis A., Ott R.L. Isolation of feline coronaviruses from two cats with diverse disease manifestations. Feline. Pract. 1981;11:16–20. [Google Scholar]
  15. Paeratakul U., De Stasio P.R., Taylor M.W. A fast and sensitive method for detecting specific viral RNA in mammalian cells. J. Virol. 1988;62:1132–1135. doi: 10.1128/jvi.62.4.1132-1135.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pedersen N.C. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am. J. Vet. Res. 1976;37:567–572. [PubMed] [Google Scholar]
  17. Pedersen N.C. Virologic and immunologic aspects of feline infectious peritonitis virus infection. In: Lai M.M.C., Stohlman M., editors. Coronaviruses. Plenum Press; New York, N.Y: 1987. pp. 529–550. [DOI] [PubMed] [Google Scholar]
  18. Pedersen N.C. Coronavirus diseases (coronavirus enteritis, feline infectious peritonitis) In: Holzworth J., editor. Diseases of the Cat. W.B. Saunders; Philadelphia, P.A: 1987. pp. 193–214. [Google Scholar]
  19. Pedersen N.C., Black J.W. Attempted immunization of cats against feline infectious peritonitis, using a virulent live virus or sublethal amounts of virulent virus. Am. J. Vet. Res. 1983;44:229–233. [PubMed] [Google Scholar]
  20. Pedersen N.C., Floyd K. Experimental studies with three new strains of feline infectious peritonitis virus: FIPV-UCD2, FIPV-UCD3 and FIPV-UCD4. Compend. Contin. Educ. Pract. Vet. 1985;7:1001–1011. [Google Scholar]
  21. Pedersen N.C., Ward J., Mengeling W.L. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pedersen N.C., Boyle J.F., Floyd K., Fudge A., Barker J. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 1981;42:368–377. [PubMed] [Google Scholar]
  23. Pedersen N.C., Evermann J.F., McKeirnan A.J., Ott R.L. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am. J. Vet. Res. 1984;45:2580–2585. [PubMed] [Google Scholar]
  24. Siddell S.G., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  25. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of viruses, II. The basis for serodiagnosis and vaccines. Elsevier; Amsterdam: 1990. pp. 359–379. [Google Scholar]
  26. Stoddart C., Scott F. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J. Virol. 1989;63:436–440. doi: 10.1128/jvi.63.1.436-440.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tupper G., Evermann J., Russell R., Thouless M. Antigenic and biological diversity of feline coronaviruses: feline infectious peritonitis and feline enteritis virus. Arch. Virol. 1987;96:29–38. doi: 10.1007/BF01310988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vennema H., DeGroot R.J., Harbour D., Horzinek M.C., Spaan W.J.M. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1990;181:327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss R.C., Scott F.W. Pathogenesis of feline infectious peritonitis: Nature and development of viremia. Am. J. Vet. Res. 1981;42:382–390. [PubMed] [Google Scholar]
  30. Weiss R.C., Scott F.W. Pathogenesis of feline infectious peritonitis: Pathologic changes and immunofluorescence. Am. J. Vet. Res. 1981;42:2036–2048. [PubMed] [Google Scholar]
  31. Wesley R.D. Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain) In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Plenum Press; New York: 1990. pp. 301–306. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES