Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;23(1):245–257. doi: 10.1016/0378-1135(90)90155-O

Contribution of molecular biology to the study of the porcine interferon system

François Lefevre 1, Dominique Mege 1, René L'Haridon 1, Serge Bernard 2, Christane de Vaureix 1, Claude la Bonnardiere 1
PMCID: PMC7117295  PMID: 2205970

Abstract

We have performed molecular studies on the pig interferon (IFN) system (i) to analyse the role played by endogenous IFN in neonatal viral enteritis such as transmissible gastroenteritis and possibly to obtain, via recombinant DNA technology, a new anti-infectious and immunomodulatory agent in this species, (ii) to characterize the structure and biological functions of the IFN-like antiviral activity produced by the porcine embryo at the time implantation in the uterus.

By probing porcine genomic libraries with human and porcine IFN-α probes to isolate related genes, we have shown that the porcine IFN-α multigene family included, like several other mammalian species, two subfamilies of related but distinct genes. Class I subfamily contains at least 11 loci, located on chromosome no. 1, among which nine have been cloned and two (potentially functional) sequenced. Class II subfamily, which is specifically expressed by the embryo of ruminants before implantation, contains at least seven loci among which six have been cloned.

One of the sequenced class I loci: PoIFN-α1 encodes a 189 amino acids (AA) preprotein. After removal of the sequence encoding the putative signal peptide (23 N-terminal AA) this gene was inserted into an Escherichia coli bicistronic expression vector allowing intracellular synthesis of mature porcine IFN-α1 (methionyl IFN-α1). Expression of the recombinant protein was optimized by insertion of a seven base pairs long random synthetic sequence in the intercistronic region, followed by cloning in E. coli and immunodetection of clones expressing high amounts of recombinant protein.

The E. coli strain obtained produced high levels of a 18 000 Da protein exhibiting the same in vitro overall biological properties as leucocyte derived porcine IFN (LeuIFN). However, it had a stronger antiviral effect on porcine cells than LeuIFN. After immunoaffinity purification to a specific activity of 5−10 × 107 International Units (IU)/mg of protein, pharmacokinetic and pharmacological studies were realized to determine the in vivo half life of this rIFN-α in the pig. These experiments revealed no major toxic effects in newborn (given 5 × 106IU/kg) or adult (1 × 106IU/kg) pigs. A significant pyrogenic effect (+ 1.5°C) was noted only in the adults.

Footnotes

This work was supported in part by the French I.N.R.A. A.I.P. “Approche moléculaire du Génome”.

References

  1. Babiuk L.A., Bielefeldt-Ohmann H., Gifford G., Gzarniecki C.W., Scialli V.T., Hamilton E.B. Effect of bovine α1-interferon on bovine herpesvirus type 1-induced respiratory disease. J. Gen. Virol. 1985;66:2283–2394. doi: 10.1099/0022-1317-66-11-2383. [DOI] [PubMed] [Google Scholar]
  2. Bazer F.W., Vallet J.L., Roberts R.M., Sharp D.C., Thartcher W.W. Role of conceptus secretory products in establishment of pregnancy. J. Reprod. Fertil. 1986;76:841–850. doi: 10.1530/jrf.0.0760841. [DOI] [PubMed] [Google Scholar]
  3. Bielefeldt-Ohmann H., Lawman M.J.P., Babiuk L.A. Bovine interferon: its biology and application in veterinary medicine. Antiviral Res. 1987;7:187–210. doi: 10.1016/0166-3542(87)90028-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capon D.J., Shepard H.M., Goeddel D.V. Two distinct families of human and bovine interferon-α genes are coordinately expressed and encode functional polypeptides. Mol. Cell Biol. 1985;5:768–779. doi: 10.1128/mcb.5.4.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charlier M., Hue D., Martal J., Gaye P. Cloning and expression of cDNA encoding ovine trophoblastin: its identity with a class II alpha interferon. Gene. 1989;77:341–348. doi: 10.1016/0378-1119(89)90082-6. [DOI] [PubMed] [Google Scholar]
  6. Charpigny G., Reinaud P., Huet J.C., Guillomot M., Charlier M., Pernollet J.C., Martal J. High homology between a trophoblastic protein (trophoblastin) isolated from ovine embryo and α-interferons. FEBS Lett. 1988;228:12–16. doi: 10.1016/0014-5793(88)80574-x. [DOI] [PubMed] [Google Scholar]
  7. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Ann. Rev. Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  8. Hauptmann R., Swetly P. A novel class of human type I interferons. Nucleic Acids Res. 1985;13:4739–4749. doi: 10.1093/nar/13.13.4739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Himmler A., Hauptmann R., Adolf G.R., Swetly P. Molecular cloning and expression in Escherichia coli of equine type I interferons. DNA. 1986;5:345–356. doi: 10.1089/dna.1986.5.345. [DOI] [PubMed] [Google Scholar]
  10. Imakawa K., Anthony R.V., Kazemi M., Marotti K.R., Polirzq H.F., Roberts R.M. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature. 1987;330:377–379. doi: 10.1038/330377a0. [DOI] [PubMed] [Google Scholar]
  11. Imakawa K., Hansen T.R., Malathy P.-V., Anthony R.V., Polites H.V., Marotti K.R., Roberts R.M. Molecular cloning and characterization of complementary deocyribonucleic acids corresponding to bovine trophoblast protein-1: a comparisn with ovine trophoblast protein-1 and bovine interferon-αII. Mol. Endocrinol. 1989;3:127–139. doi: 10.1210/mend-3-1-127. [DOI] [PubMed] [Google Scholar]
  12. La Bonnardière C., Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect. Immun. 1981;32:28–31. doi: 10.1128/iai.32.1.28-31.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. La Bonnardière C., Laude H., Berg K. Biological and antigenic relationships between virus-induced porcine and human interferons. Ann. Inst. Pasteur/Virol. 1986;137E:171–180. doi: 10.1016/S0769-2617(86)80202-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laude H., La Bonnardière C. Cytocidal effect of interferons on porcine renal cells. J. Interferon Res. 1984;4:101–110. doi: 10.1089/jir.1984.4.101. [DOI] [PubMed] [Google Scholar]
  15. Lefèvre F., La Bonnardière C. Molecular cloning and sequencing of a gene encoding biologically active porcine α-interferon. J. Interferon Res. 1986;6:349–360. doi: 10.1089/jir.1986.6.349. [DOI] [PubMed] [Google Scholar]
  16. Mantei N., Schwarzstein M., Panem S., Nagata S., Weissmann C. The nucleotide sequence of a cloned human leukocyte interferon cDNA. Gene. 1980;10:1–10. doi: 10.1016/0378-1119(80)90137-7. [DOI] [PubMed] [Google Scholar]
  17. Oldman R.K. Interferon: a model for future biologicals. In: Gresser I., editor. Vol. 6. Academic Press; New York: 1985. pp. 127–143. (Interferon). [Google Scholar]
  18. Oppenheim D.S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980;95:785–795. doi: 10.1093/genetics/95.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Piasecki E. Properties of natural porcine interferons. J. Interferon Res. 1988;8:61–73. doi: 10.1089/jir.1988.8.61. [DOI] [PubMed] [Google Scholar]
  20. Schwers A., Van Den Broecke C., Maenhoudt M., Beduin J.M., Werenne J., Pastoret P.P. Experimental rotavirus diarrhoea in colostrum-deprived newborn calves: assay of treatment by administration of bacterially produced human interferon (Hu-IFN α2) Ann. Rech. Vet. 1985;1666:213–218. [PubMed] [Google Scholar]
  21. Soloviev V.D., Pokidysheva L.N., Volodina T.N. On antigenic similarity of some alpha-interferons. Vopr. Virusol. 1982;27:526–527. [PubMed] [Google Scholar]
  22. Stewart W.E., II . Springer-Verlag; Wien: 1979. The Interferon System; pp. 266–291. [Google Scholar]
  23. Toy J.L. The interferons. Clin. Exp. Immunol. 1983;544:1–13. [PMC free article] [PubMed] [Google Scholar]
  24. Vallet J.L., Bazer F.W., Fliss M.F.V., Thatcher W.W. Effect of ovine conceptus secretory proteins and purified ovine trophoblast protein-1 on interoestrous interval and plasma concentrations of prostaglandins F-2α and E and 13, 14-dihydro-15-keto prostaglandin FF-2α in cyclic ewes. J. Reprod. Fertil. 1988;84:493–504. doi: 10.1530/jrf.0.0840493. [DOI] [PubMed] [Google Scholar]
  25. Velan B., Cohen S., Grosfled H., Leitner M., Shafferman A. Bovine interferon α genes. Structure and expression. J. Biol. Chem. 1985;260:5498–5504. [PubMed] [Google Scholar]
  26. Werenne J., Van den Broecke C., Schwers A., Goossens A., Bugyaki L., Maenhoudt M., Pastoret P.P. Antiviral effect of bacterially produced human interferon (Hu-IFN α2) against experimental vaccinia infection in calves. J. Interferon Res. 1985;5:129–136. doi: 10.1089/jir.1985.5.129. [DOI] [PubMed] [Google Scholar]
  27. Yerle M., Gellin J., Echard G., Lefèvre F., Gillois M. Chromosomal localization of leukocyte interferon genes in the pig (Sus scrofa domestica L.) by in situ hybridization. Cytogenet. Cell Genet. 1986;42:129–132. doi: 10.1159/000132265. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES