Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;42(2):159–170. doi: 10.1016/0378-1135(94)90015-9

Serological and genotypic characterization of group a rotavirus reassortants from diarrheic calves born to dams vaccinated against rotavirus

Wei Lu a, Gerald E Duhamel a,, David A Benfield b, Dale M Grotelueschen c
PMCID: PMC7117311  PMID: 7886929

Abstract

Two strains of bovine rotavirus (BRV), designated strain Nebraska Scottsbluff-1 (NS-1) and NS-2, were isolated from 2 neighboring cow-calf beef cattle ranches where dams had been vaccinated with a commercial vaccine containing group A BRV strain Neonatal Calf Diarrhea Virus (NCDV)-Lincoln (P1:G6). Nothern blot by hybridizations using whole genomic RNA probes indicated that strains NS-1 and NS-2 had identical group A RNA electrophoretic patterns and were homologous at all gene segments. Strain NS-1 was compared with reference group A BRV strains using serological and genotypic methods. In vitro virus neutralization assays indicated that strain NS-1 was neutralized by a G6-specific neutralizing monoclonal antibody (mAb) and guinea pig hyperimmune serum (GPHS) raised against BRV strain B641 (P5:G6), but not by G10-specific neutralizing mAb or GPHS raised against BRV strain BRV strain B223 (P11:G10). Nucleic acid hybridization experiments using whole-genomic RNA probes revealed that gene segment 4 of strain NS-1 differed from BRV strains NCDV-Lincoln and B223, but hybridized with strain B641. Conversely, gene segment 5 of strain NS-1 hybridized with BRV strain B223, but not with BRV strains NCDV-Lincoln and B641. A G-specific cDNA probe produced by reverse transcription polymerase chain reaction (RT-PCR) amplification of strain NS-1 hybridized specifically only with G6 strains NCDV-Lincoln and B641, but not with G10 strain B223. Co-electrophoresis experiments using strains NS-1, B641, and B223 further confirmed these results, suggesting that strain NS-1 was a naturally-occurring reassortant BRV between strains B641 and B223. Taken together these results indicated that a naturally-occurring group A BRV reassortant with a P gene different from the vaccine virus was responsible for the diarrheal syndrome observed on both ranches. Results from this study also indicate the existence of at least 2 different gene segments 5 among group A BRV infecting cattle.

Keywords: Rotavirus; Cattle, rotavirus; Diagnosis, rotavirus; Diarrhoea; Vaccination

Footnotes

This paper represents a portion of the thesis submitted by W. Lu to the University of Nebraska in partial fulfilment of the requirements for the PhD degree

References

  1. Coulson B.S., Fowler K.J., Bishop R.F., Cotton R.G.H. Neutralizing monoclonal antibodies to human rotavirus and indications of antigenic drift among strains from neonates. J. Virol. 1985;54:14–20. doi: 10.1128/jvi.54.1.14-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Estes M.K., Cohen J. Rotavirus gene structure and function. Microbiol. Rev. 1989;53:410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flores J., Greenberg H.B., Myslinski J., Kalica A.R., Wyatt R.G., Kapikian A.Z., Chanock R.M. Use of transcription probes for genotyping rotavirus reassortants. Virology. 1982;121:288–295. doi: 10.1016/0042-6822(82)90168-4. [DOI] [PubMed] [Google Scholar]
  4. Flores J., Sears J., Schael I.P., White L., Garcia D., Lanata C., Kapikian A.Z. Identification of human rotavirus serotype by hybridization to polymerase chain reaction- generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7. J. Virol. 1991;64:4021–4024. doi: 10.1128/jvi.64.8.4021-4024.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galfre G., Howe S.C., Milstein C., Butcher G.W., Howard J.C. Antibodies to major histocompatibility antigens produced by hybrid cells lines. Nature. 1977;266:550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  6. Gombold J.L., Ramig R.M. Analysis of reassortment of genomic segments in mice mixedly infected with rotaviruses SA11 and PRV. J. Virol. 1986;57:110–116. doi: 10.1128/jvi.57.1.110-116.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grotelueschen D.M., Duhamel G.E., Lu W., Hesse R.A., Berry J.G. Possible vaccination failure in beef cow herds caused by infection with rotavirus distinct from the vaccine virus: Clinical observations. 17th World Buiatrics Congr. and 25th Am. Assoc. Bov. Pract. Conf. 1992;1:190–196. August 31 – September 4, St. Paul, MN, USA. [Google Scholar]
  8. Hardy M.E., Woode G.N., Xu Z., Gorziglia M. Comparative amino acid sequence analysis of VP4 for VP7 serotype 6 bovine rotavirus strains NCDV, B641 and UK. J. Virol. 1991;65:5535–5538. doi: 10.1128/jvi.65.10.5535-5538.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hardy M.E., Gorziglia M., Wood G.N. Amino acid sequence analysis of bovine rotavirus B223 reveals a unique outer capsid protein VP4 and confirms a third bovine VP4 type. Virol. 1992;191:291–300. doi: 10.1016/0042-6822(92)90191-q. [DOI] [PubMed] [Google Scholar]
  10. Harlow E., Lane D. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y: 1988. Antibodies — A laboratory manual; pp. 421–450. [Google Scholar]
  11. Hesse R.A., Couture L.P., Ellsworth S.R., Duhamel G.E., Lu W., Dickinson E.O., Benfield D.A. Production and characterization of VP4/VP7 reassortant swine rotaviruses derived from Gottfried and OSU parental strains. Am. J. Vet. Res. 1993;54:1623–1629. [PubMed] [Google Scholar]
  12. Hoshino Y., Wyatt R.G., Greenberg H.B., Flores J., Kapikian A.Z. Serotypic similarity and diversity of rotaviruses of mammalian and avian origin as studied by plaque-reduction neutralization. J. Infect. Dis. 1984;149:694–702. doi: 10.1093/infdis/149.5.694. [DOI] [PubMed] [Google Scholar]
  13. Hoshino Y., Sereno M.M., Midthun K., Flores J., Kapikian A.Z., Channock R.M. Vol. 82. 1985. Independent segregation of two antigen specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity; pp. 8701–8704. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hussein H.A., Parwani A.V., Rosen B.I., Luchelli A., Saif L.J. Detection of rotavirus G1, G2, G3, and G11 in feces of diarrheic calves by using polymerase chain reaction-derived cDNA probes. J. Clin. Microbiol. 1993;31:2491–2496. doi: 10.1128/jcm.31.9.2491-2496.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Isegawa Y., Nakagomi O., Nakagomi T., Ueda S. A VP4 sequence highly conserved in human strain AU-1 and feline rotavirus strain FRV-1. J. Gen. Virol. 1992;73:1939–1946. doi: 10.1099/0022-1317-73-8-1939. [DOI] [PubMed] [Google Scholar]
  16. Knowlton D.R., Spector D.M., Ward R.L. Development of an improved method for measuring neutralizing antibody to rotavirus. J. Virol. Methods. 1991;33:127–134. doi: 10.1016/0166-0934(91)90013-p. [DOI] [PubMed] [Google Scholar]
  17. Matsuda Y., Nakagomi O., Offit P.O. Presence of three types (VP4 serotypes) and two G (VP7 serotypes) among bovine rotavirus strains. Arch. Virol. 1990;115:199–207. doi: 10.1007/BF01310530. [DOI] [PubMed] [Google Scholar]
  18. Matsuda Y., Mukoyama A., Hasegawa A., Taniguchi K., Inouye A. Characterization of a human rotavirus strain which is possibly a naturally-occuring reassortant virus. Viral Res. 1988;10:167–175. doi: 10.1016/0168-1702(88)90013-5. [DOI] [PubMed] [Google Scholar]
  19. Mebus C.A., Konno M., Underdahl N.R., Twienhaus M.J. Cell culture propagation of neonatal calf diarrhea (scours) virus. Can. Vet. J. 1971;12:69–72. [PMC free article] [PubMed] [Google Scholar]
  20. Nakagomi O., Nakagomi T. Molecular evidence for naturally occuring single VP7 gene substitution reassortment between human rotaviruses belonging to two different genogroups. Arch. Virol. 1991;119:67–81. doi: 10.1007/BF01314324. [DOI] [PubMed] [Google Scholar]
  21. Offit P.A., Blavat G., Clark H.F., Shaw R., Greenberg H.B. Role of gene segments 4 and 9 in determining rotavirus virulence and protection against rotavirus challenge. In: Brown F., Chanock R.M., Lerner R.A., editors. Vaccines 86, New approaches to immunization. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y: 1986. pp. 267–273. [Google Scholar]
  22. Parwani A.V., Hussein H.A., Rosen B.I., Luchelli A., Navarro L., Saif L.J. Characterization of field strains of group A bovine rotaviruses by using polymerase chain reaction-generated G and P type-specific cDNA probes. J. Clin. Microbiol. 1993;31:2010–2015. doi: 10.1128/jcm.31.8.2010-2015.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Richardson S.C., Grimwood K., Bishop R.F. Analysis of homotypic and heterotypic serum immune responses to rotavirus proteins following primary rotavirus infection by using the radioimmunoprecipitation technique. J. Clin. Microbiol. 1993;31:377–385. doi: 10.1128/jcm.31.2.377-385.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saif L.J., Jackwood A.J. Enteric virus vaccines: Theoretical considerations, current status, and future approaches. In: Saif L.J., Theil K.W., editors. Viral Diarrhea of Man and Animals. CRC press, Inc; Boca Raton, FL: 1989. pp. 73–95. [Google Scholar]
  25. Sharpee R.L., Nelson L.D., Beckenhauer W.H. Immunogenicity of a vaccine containing inactivated bovine rotavirus and coronavirus combined with an Escherichia coli bacterin. Proc. Symp. Bov. Neonatal Diarrhea, Western Vet. Conf.; Las Vegas, NV; 1988. pp. 27–32. [Google Scholar]
  26. Shaw R.D., Mackow E.R., Dyall-Smith M.L., Lazdins I., Holmes I.H., Greenberg H.B. Serotypic analysis of VP3 and VP7 neutralization escape mutants of rhesus rotavirus. J. Virol. 1988;62:3509–3512. doi: 10.1128/jvi.62.9.3509-3512.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Snodgrass D.R., Ojeh C.K., Campbell I., Herring A.J. Bovine rotavirus serotypes and their significance for immunization. J. Clin. Microbiol. 1984;20:342–346. doi: 10.1128/jcm.20.3.342-346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Snodgrass D.R., Fitzgerald T., Campbell I., Scott P.M.M., Browning G.F., Miller D.I., Herring A.J., Greenberg H.B. Rotavirus serotype 6 and 10 predominate in cattle. J. Clin. Microbiol. 1990;28:504–507. doi: 10.1128/jcm.28.3.504-507.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Theil K.W. Nongroup A rotaviruses. In: Saif L.J., Theil K.W., editors. Viral Diarrhea of Man and Animals. CRC press, Inc; Boca Raton, FL: 1989. pp. 73–95. [Google Scholar]
  30. Urasawa S., Urasawa T., Taniguchi K. Genetic reassortment between two human rotaviruses having different serotype and subgroup specificities. J. Gen. Virol. 1986;67:1551–1559. doi: 10.1099/0022-1317-67-8-1551. [DOI] [PubMed] [Google Scholar]
  31. Ward R.L., McNeal M.M., Sander D.S., Greenberg H.B., Bernstein D.I. Immunodominance of the VP4 neutralization protein of rotavirus in protective natural infections of young children. J. Virol. 1993;67:464–468. doi: 10.1128/jvi.67.1.464-468.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woode G.N., Kelso N.E., Simpson T.F., Gaul S.K., Evans L.E., Babiuk L. Antigenic relationships among rotavirus: serum neutralization and cross-protection in gnotobiotic calves. J. Clin. Microbiol. 1983;18:358–364. doi: 10.1128/jcm.18.2.358-364.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zheng S., Woode G.N., Melendy D.R., Ramig R.F. Comparative studies of the antigenic polypeptide species VP4, VP6, and VP7 of three strains of bovine rotavirus. J. Clin. Microbiol. 1989;27:1939–1945. doi: 10.1128/jcm.27.9.1939-1945.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES