Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Mar 10;43(2):103–122. doi: 10.1016/0378-1135(95)92531-F

There is nothing permanent except change. The emergence of new virus diseases

Uwe Truyen a,, Colin R Parrish b, Timm C Harder c, Oskar-Rüger Kaaden a
PMCID: PMC7117336  PMID: 7740750

Abstract

The sudden appearance of apparently new viruses with pathogenic potential is of fundamental importance in medical microbiology and a constant threat to humans and animals. The emergence of a “new” pathogen is not an isolated event, as for instance the frequent appearance of new influenza virus strains demonstrates. Often the new virus strains co-circulate with the older strains in a susceptible population, but a replacement of the older strains has been also observed. In rare instances the new viruses can cause dramatic epidemics or pandemics, such as those observed with the human immunodeficiency virus, canine parvovirus, or most recently, with the agent of bovine spongiform encephalopathy in the United Kingdom. The mechanisms of the emergence are not always clearly understood, but an altered host range appears to be a common event. Whether a true change in host range occurs, or whether the virus adapted to the host and replicated more efficiently, is often unknown.

This review tries to summarize the facts that are known about a wide variety of “new” viruses of mammals, such as the simian, human and feline lentiviruses, the feline coronaviruses, the feline parvoviruses, the carnivore morbilliviruses, the influenza A viruses, and the transmissible spongiform encephalopathies. A particular emphasis will be put on the genetic mechanisms that might have taken place and that might have been responsible for their sudden appearance.

Keywords: Virus, evolution

References

  1. Allan J.S. Viral evolution and AIDS. J. NIH Res. 1992;4:51–54. [Google Scholar]
  2. Appel M.J.G., Scott F.W., Carmichael L.E. Isolation and immunization studies of a canine parvolike virus from dogs with haemorrhagic enteritis. Vet. Rec. 1979;105:156–159. doi: 10.1136/vr.105.8.156. [DOI] [PubMed] [Google Scholar]
  3. Appel M.J.G., Reggiardo C., Summers B.A., Pearce-Kelling S., Mare J., Noon T.H., Redd R.E., Shively J.N., Örvell C. Canine distemper virus infection and encephalitis in javelinas (collared peccaries) Arch. Virol. 1991;119:147–152. doi: 10.1007/BF01314331. [DOI] [PubMed] [Google Scholar]
  4. Appel M.J.G., Yates R.A., Foley G.L., Bernstein J.J., Santinelli S., Spelman L.H., Miller L.D., Arp L.H., Anderson M., Barr M., Pearce-Kelling S., Summers B.A. Canine distemper epizootic in lions, tigers, and leopards in North America. J. Vet. Diagn. Invest. 1994 doi: 10.1177/104063879400600301. submitted. [DOI] [PubMed] [Google Scholar]
  5. Banner L.R., Lai M.M.C. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1988;155:441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barrett T., Crowther J., Osterhaus A.D.M.E., Subbarao S.M., Groen J., Haas L., Mamaev L.V., Titenko A.M., Visser I.K.G., Bostock C.J. Molecular and serological studies on the recent seal epizootics in Europe and Siberia. Sci. Total Environ. 1992;115:117–132. doi: 10.1016/0048-9697(92)90037-s. [DOI] [PubMed] [Google Scholar]
  7. Barrett T., Visser I.K.G., Mamaev L.V., Goatley L.G., van Bressem M.-F., Osterhaus A.D.M.E. Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus. Virology. 1993;193:1010–1012. doi: 10.1006/viro.1993.1217. [DOI] [PubMed] [Google Scholar]
  8. Bradley R., Wilesmith J.W. Epidemiology and control of bovine spongiform encephalopathy (BSE) British Med. Bull. 1993;49:932–959. doi: 10.1093/oxfordjournals.bmb.a072654. [DOI] [PubMed] [Google Scholar]
  9. Chambers T.M., Kawaoka Y., Webster R.G. Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin. Virology. 1988;167:414–421. [PubMed] [Google Scholar]
  10. Chang S.-F., Sgro J.-Y., Parrish C.R. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. J. Virol. 1992;66:6858–6867. doi: 10.1128/jvi.66.12.6858-6867.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christianson K.K., Ingersoll J.D., Landon R.M., Pfeiffer N.E., Gerber J.D. Characterization of a temperature sensitive feline infectious peritonitis coronavirus. Arch. Virol. 1989;109:185–196. doi: 10.1007/BF01311080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daousi P.-Y., Haines D.M., Thorsen J., Duignan P.J., Geraci J.R. Phocine distemper in a harp seal (Phoca groenlandica) from the gulf of St. Lawrence. Canada J. Wildl. Dis. 1993;29:114–117. doi: 10.7589/0090-3558-29.1.114. [DOI] [PubMed] [Google Scholar]
  13. De Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79–1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large deletions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Desroisers R.C. A finger on the missing link. Nature. 1990;345:288–289. doi: 10.1038/345288a0. [DOI] [PubMed] [Google Scholar]
  15. Domingo M., Ferrer L., Pumarola M., Marco A., Plana J., Kennedy S., McAlisky M., Rima B.K. Morbillivirus in dolphins. Nature (London) 1990;348:21. doi: 10.1038/348021a0. [DOI] [PubMed] [Google Scholar]
  16. Gajdusek D.C. Unconventional viruses and the origin and disappearance of Kuru. Science. 1977;197:943–960. doi: 10.1126/science.142303. [DOI] [PubMed] [Google Scholar]
  17. Gorman O.T., Bean W.J., Kawaoka Y., Donatelli I., Guo Y., Webster R.G. Evolution of influenza A virus nucleoprotein genes: Implications for the origin of H1N1 human and classical swine viruses. J. Virol. 1991;65:3704–3714. doi: 10.1128/jvi.65.7.3704-3714.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gorman O.T., Bean W.J., Kawaoka Y., Webster R.G. Evolution of the nucleoprotein gene of influenza A virus. J. Virol. 1990;64:1487–1497. doi: 10.1128/jvi.64.4.1487-1497.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gorman O.T., Donis R.O., Kawaoka Y., Webster R.G. Evolution of influenza A virus PB2 genes: Implications for evolution of ribonucleoprotein complex and origin of human influenza A virus. J. Virol. 1990;64:4893–4902. doi: 10.1128/jvi.64.10.4893-4902.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grmek M.D. Princeton University Press; Princeton, New Jersey, USA: 1990. History of AIDS. Emergence and origin of a modern pandemic. [Google Scholar]
  21. Harder T.C., Klusmeyer K., Frey H.-R., Örvell C., Liess B. Intertypic differentiation and detection of intratypic variants among canine and phocid morbillivirus isolates by kinetic neutralization employing a novel immunoplague assay. J. virol. Methods. 1993;41:77–92. doi: 10.1016/0166-0934(93)90164-m. [DOI] [PubMed] [Google Scholar]
  22. Hope J., Morton J.D., Farquahar C.F., Multhaup G., Beyreuther K., Kimberlin R.H. The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution, and N-terminal sequence as predicted from the normal brain protein (PrP) EMBO J. 1986;5:2591–2597. doi: 10.1002/j.1460-2075.1986.tb04539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hoskins J.D. Coronavirus infections in cats. Vet. Clin. North Am. Small Anim. Prac. 1993;23:1–16. doi: 10.1016/S0195-5616(93)50001-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huet T., Cheynier R., Meyerhans A., Roelants G., Wain-Hobson S. Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature. 1990;345:356–359. doi: 10.1038/345356a0. [DOI] [PubMed] [Google Scholar]
  25. Ishida T., Washizu T., Toriyabe K., Motoyoshi S. Detection of feline T-lymphotropic lentivirus (FTLV) infection in Japanes domestic cats. Japan. J. Vet. Sci. 1988;50:39–44. doi: 10.1292/jvms1939.50.39. [DOI] [PubMed] [Google Scholar]
  26. Kövamees J., Blixenkrone-Möller M., Sharma B., Örvell C., Norrby E. The nucleotide sequence and deduced amino acid composition of the haemagglutin and fusion proteins of the morbillivirus phocid distemper virus. J. Gen. Virol. 1991;72:2959–2966. doi: 10.1099/0022-1317-72-12-2959. [DOI] [PubMed] [Google Scholar]
  27. Koonin E.V., Dolja V.V. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 1993;28:375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
  28. Krause R.M. The origin of plagues: Old and new. Science. 1992;257:1073–1078. doi: 10.1126/science.257.5073.1073. [DOI] [PubMed] [Google Scholar]
  29. Levy J.A. Pathogenesis of human immunodeficiency virus infections. Microbiol. Rev. 1993;57:183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Markussen N.H., Have P. Phocine distemper virus infection in harp seals (Phoca groenlandica) Marine Mammal Sci. 1992;8:19–24. [Google Scholar]
  31. Mitrova E., Mayer V. Neurohistology of early preclinicallesionsin experimental subacute spongiform encephalopathy. Biologia (Bratislava) 1977;32:663–671. [Google Scholar]
  32. Myers G., MacInnes K., Myers L. In: Emerging Viruses. Morse S.S., editor. Oxford University Press Inc; Oxford: 1993. Phylogenetic moments in the AIDS epidemic; pp. 120–137. [Google Scholar]
  33. Nathanson N., McGann K.A., Wilesmith J., Desrosiers R.C., Brookmeyer R. The evolution of virus diseases: Their emergence, epidemicity, and control. Virus Res. 1993;29:3–20. doi: 10.1016/0168-1702(93)90122-4. [DOI] [PubMed] [Google Scholar]
  34. Olsen C.W. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol. 1993;36:1–37. doi: 10.1016/0378-1135(93)90126-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Olmsted R.A., Langley R., Roelke M.E., Goeken R.M., Adger-Johnson D., Goff J.P., Albert J.P., Packer C., Laurenson M.K., Caro T.M., Scheepers L., Wildt D.E., Bush M., Martenson J.S., O'Brien S.J. Worldwide prevalence of lentivirus infection in wild feline species: Epidemiologic and phylogenetic aspects. J. Virol. 1992;66:6008–6018. doi: 10.1128/jvi.66.10.6008-6018.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Osterhaus A.D.M.E., Vedder E.J. Identification of a virus causing recent seals deaths. Nature (London) 1988;335:20. doi: 10.1038/335020a0. [DOI] [PubMed] [Google Scholar]
  37. Parrish C.R. In: Emerging Viruses. Morse S.S., editor. Oxford University Press Inc; Oxford: 1993. Canine parvovirus 2: A probable example of interspecies transfer; pp. 194–202. [Google Scholar]
  38. Parrish C.R. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology. 1991;183:195–205. doi: 10.1016/0042-6822(91)90132-u. [DOI] [PubMed] [Google Scholar]
  39. Parrish C.R., Aquadro C.F., Strassheim M.L., Everman J.F., Sgro J.-Y., Mohammed H.O. Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. Virology. 1991;129:401–414. doi: 10.1128/jvi.65.12.6544-6552.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Parrish C.R. Emergence, natural history and variation of canine, mink, and feline parvoviruses. Adv. Virus Res. 1990;38:403–450. doi: 10.1016/S0065-3527(08)60867-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Parrish C.R., O'Connell P.H., Everman J.F., Carmichael L.E. Global spread and replacement of canine parvovirus strains. J. Gen. Virol. 1988;69:1111–1116. doi: 10.1099/0022-1317-69-5-1111. [DOI] [PubMed] [Google Scholar]
  42. Parrish C.R., Have P., Foreyt W.J., Everman J.F., Senda M., Carmichael L.E. Natural variation of canine parvovirus. Science. 1985;230:1046–1048. doi: 10.1126/science.4059921. [DOI] [PubMed] [Google Scholar]
  43. Pedersen N.C., Boyle J.F., Floyd K. Infection studies in kittens using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 1981;42:363–367. [PubMed] [Google Scholar]
  44. Pedersen N.C., Ho E.W., Brown M.L., Yamamoto J.K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-syndrome. Science. 1987;235:790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  45. Prusiner S.B. Scrapie prions. Ann. Rev. Microbiol. 1989;43:345–374. doi: 10.1146/annurev.mi.43.100189.002021. [DOI] [PubMed] [Google Scholar]
  46. Querat G., Audoly G., Sonigo P., Vigne R. Nucleotide sequence analysis of SA-OMVV, a visnarelated ovine lentivirus: phylogenetic history of lentiviruses. Virology. 1990;175:434–447. doi: 10.1016/0042-6822(90)90428-t. [DOI] [PubMed] [Google Scholar]
  47. Rigby M.A., Holmes, Pistello M., Mackay A., Leigh Brown A.J., Neil J.C. Evolution of structural proteins of feline immunodeficiency virus: molecular epidemiology and evidence of selection for change. J. Gen. Virol. 1993;74:425–436. doi: 10.1099/0022-1317-74-3-425. [DOI] [PubMed] [Google Scholar]
  48. Rogers G.N., D'Souza B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology. 1989;173:317–322. doi: 10.1016/0042-6822(89)90249-3. [DOI] [PubMed] [Google Scholar]
  49. Rogers G.N., Paulson J.C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127:361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  50. Rota J.S., Hummel K.B., Rota P.A., Bellini W. Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology. 1992;188:135–142. doi: 10.1016/0042-6822(92)90742-8. [DOI] [PubMed] [Google Scholar]
  51. Rota P.A., Bloom A.E., Vanchiere J.A., Bellini W.J. Evolution of the nucleocapsid and matrix genes of wild-type strains of measles virus isolates from recent epidemics. Virology. 1994;198:724–730. doi: 10.1006/viro.1994.1086. [DOI] [PubMed] [Google Scholar]
  52. Schneider J., Kaaden O.-R., Copeland D., Orozlan S., Hunsmann G. Shedding and interspecies type sero-reactivity of the envelope glycopeptide gp120 of the human immunodeficiency virus. J. Gen. Virol. 1986;67:2533–2538. doi: 10.1099/0022-1317-67-11-2533. [DOI] [PubMed] [Google Scholar]
  53. Schulman J.L., Palese P. Virulence factors of influenza A viruses: WSN virus neuraminidase required for plaque productions in MDCK cells. J. Virol. 1977;24:170–176. doi: 10.1128/jvi.24.1.170-176.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sharp P.M., Li W.H. Understanding the origins of AIDS viruses. Nature. 1988;336:315. doi: 10.1038/336315a0. [DOI] [PubMed] [Google Scholar]
  55. Siegl G. In: The Parvoviruses. Berns K.I., editor. Plenum Press; New York, USA: 1984. Canine parvovirus: origin and significance of a “new” pathogen; pp. 363–388. [Google Scholar]
  56. Smith F.I., Palese P. In: The influenza viruses. Krug R.M., editor. Plenum Press; New York: 1989. Variation in influenza virus genes; pp. 319–359. [Google Scholar]
  57. Smith T.F., Srinivasan A., Schochetman G., Marcus M., Myers G. The phylogenetic history of human immunodeficiency viruses. Nature. 1988;333:573–575. doi: 10.1038/333573a0. [DOI] [PubMed] [Google Scholar]
  58. Snijder E.J., Horzinek M.C. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J. Gen. Virol. 1993;74:2305–2316. doi: 10.1099/0022-1317-74-11-2305. [DOI] [PubMed] [Google Scholar]
  59. Spencer J.A., van Dijk A.A., Horzinek M.C., Egberink H.F., Bengis R.G., Keet D.F., Morikawa S., Bishop D.H.L. Incidence of feline immunodeficiency virus reactive antibodies in free-ranging lions of the Kruger National park and the Etosha National Park in Southern Africa detected by recombinant FIV p24 antigen. Onderstepoort J. Vet. Res. 1992;59:315–322. [PubMed] [Google Scholar]
  60. Strassheim M.L., Gruenberg A., Veijalainen P., Sgro J.-Y., Parrish C.R. Two dominant neutralizing antigenic determinants of canine parvovirus are found on the threefold spike of the virus capsid. Virology. 1994;198:175–184. doi: 10.1006/viro.1994.1020. [DOI] [PubMed] [Google Scholar]
  61. Subbarao E.K., London W., Murphy B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993;67:1761–1764. doi: 10.1128/jvi.67.4.1761-1764.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sugiura A., Ueda M. Neurovirulence of influenza virus in mice. I. Neurovirulence of recombinants between virulent and avirulent virus strains. Virology. 1980;101:440–449. doi: 10.1016/0042-6822(80)90457-2. [DOI] [PubMed] [Google Scholar]
  63. Swofford D.L. the Illinois Natural History Survey; Champaign, Illinois: 1991. PAUP: Phylogenetic analysis using parsimony, version 3.0s. Computer program distributed. by. [Google Scholar]
  64. Tratschin J.-D., McMaster G.K., Kronauer G., Siegl G. Canine parvovirus: relationship to wildtype and vaccine strains of feline panleukopenia virus and mink enteritis virus. J. Gen. Virol. 1982;61:33–41. doi: 10.1099/0022-1317-61-1-33. [DOI] [PubMed] [Google Scholar]
  65. Truyen U., Parrish C.R. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: Distinct host cell tropisms of each virus in vitro and in vivo. J. Virol. 1992;66:5399–5408. doi: 10.1128/jvi.66.9.5399-5408.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Truyen U., Agbandje M., Parrish C.R. Characterization of the feline host range and a specific epitope of feline panleukopenia virus. Virology. 1994;200:494–503. doi: 10.1006/viro.1994.1212. [DOI] [PubMed] [Google Scholar]
  67. Veijaleinen P. Characterization of biological and antigenic properties of raccoon dog and blue fox parvoviruses, A monoclonal antibody study. Vet. Microbiol. 1988;16:219–230. doi: 10.1016/0378-1135(88)90026-0. [DOI] [PubMed] [Google Scholar]
  68. Visser I.K.G., Kumarev V.P., Örvell C., DeVries P., Broeders H.W.J., van de Bildt M., Groen J., Teppema J.S., Burger M.C., Uytdehaag F.G.C.M., Osterhaus A.D.M.E. Comparison of two morbilliviruses isolated from seals during the outbreak of distemper in north western Europe and Siberia. Arch. Virol. 1990;111:149–164. doi: 10.1007/BF01311050. [DOI] [PubMed] [Google Scholar]
  69. Visser I.K.G., van der Heijden R.W.J., van de Bildt M., Kenter M.J.H., Örvell C., Osterhaus A.D.M.E. Fusion protein gene nucleotide sequence similarities, shared antigenic sites and genetic analysis suggest that phocid distemper virus type 2 and canine distemper virus belong to the same virus entity. J. Gen. Virol. 1993;74:1989–1994. doi: 10.1099/0022-1317-74-9-1989. [DOI] [PubMed] [Google Scholar]
  70. Visser I.K.G., van Bressem M.F., de Swart R.L., van de Bildt M., Vos H.W., van der Heijden R.W.J., Saliki J.T., Örvell C., Kitching P., Kuiken T., Barrett T., Osterhaus A.D.M.E. Characterization of morbilliviruses isolated from dolphins and porpoises in Europe. J. Gen Virol. 1993;74:631–641. doi: 10.1099/0022-1317-74-4-631. [DOI] [PubMed] [Google Scholar]
  71. Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992;56:152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wilesmith J.W., Wells G.A.H., Cranwell M.P., Ryan J.B.M. Bovine spongiform encephalopathy: Epidemiological studies. Vet. Rec. 1988;123:638–644. [PubMed] [Google Scholar]
  73. Wyatt J.M., Pearson G.R., Smerdon T., Gruffydd-Jones T.J., Wells G.A.H. Spongiform encephalopathy in a cat. Vet. Rec. 1993;126:513. doi: 10.1136/vr.129.11.233. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES