Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;23(1):147–154. doi: 10.1016/0378-1135(90)90144-K

Molecular biology of transmissible gastroenteritis virus

Hubert Laude 1,, Denis Rasschaert 1, Bernard Delmas 1, Murielle Godet 1, Jacqueline Gelfi 1, Bernard Charley 1
PMCID: PMC7117338  PMID: 2169670

Abstract

The causative agent (TGEV) of porcine transmissible gastroenteritis belongs to the Coronaviridae, a family of enveloped viruses with a positive, single-stranded RNA genome. Important progress has recently been made concerning the molecular biology of TGEV. The research work of our group has been focused on two main aspects: genome structure and functional domains of the envelope proteins.

TGEV genomic RNA is organised into seven regions. The sequence of six of them, i.e. the 3′ most 8300 nucleotides, has been established from cDNA clones. Three genes encoding the structural proteins, the peplomer protein E2, the transmembrane protein E1 and the nucleoprotein, have been identified. Additional open reading frames allowed for the prediction of four non-structural polypeptides, the role of which remains to be discovered. The remaining part of the genome (estimated length 20 kb) is thought to encode the polymerase. Expression of TGEV genes involves the production of six subgenomic mRNAs, which together with the virion RNA, form a 3′ terminal nested set.

The peplomer glycoprotein E2 (220 kDa) is 1431 residues long and highly glycosylated. Several domains were identified, including a C-terminal anchoring region and at least four major antigenic sites, which cluster in the amino half part of the molecule. Two sites containing most of the critical neutralisation determinants are highly conserved among TGEV strains. The glycoprotein E1 (29kDa) is mostly embedded in the membrane and plays a crucial role in the virion architecture. However, a short N-terminal domain protruding out of the particle mediates complement-dependent neutralisation, and induces alpha interferon synthesis, likely through a direct interaction with the lymphocyte membrane.

References

  1. Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
  2. Brian D.A., Dennis D.E., Guy J.S. Genome of porcine transmissible gastroenteritis virus. J. Virol. 1980;34:410–415. doi: 10.1128/jvi.34.2.410-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charley B., Laude H. Induction of interferon alpha by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Groot R.J., Luytjes W., Horzinek M.C., Van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986;67:1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
  6. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoproteins. J. Gen. Virol. 1990;71 doi: 10.1099/0022-1317-71-6-1313. (in press) [DOI] [PubMed] [Google Scholar]
  7. Garwes D.J., Pocock D.H., Pike B.V. Isolation of subviral components from transmissible gastroenteritis virus. J. Gen. Virol. 1976;32:283–294. doi: 10.1099/0022-1317-32-2-283. [DOI] [PubMed] [Google Scholar]
  8. Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1979;3:179–190. [Google Scholar]
  9. Garwes D.J., Stewart F., Britton P. Studies on the 14kD protein of porcine transmissible gastroenteritis virus. 111th meeting of the Society for General Microbiology; Warwick, 11–14 April 1988; 1988. [Google Scholar]
  10. Jacobs L., Van der Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis Virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobs L., De Groot R., Van der Zeijst B.A.M., Horzinek M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai M.M.C. Coronavirus leader-RNA-primed transcription: an alternative mechanism to RNA splicing. Bio Essays. 1986;5:257–260. doi: 10.1002/bies.950050606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laude H., Chapsal J.M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
  16. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  17. Laude H., Gelfi J., Delmas B., Rasschaert D., Charley B. Interferon inducing domain of a coronavirus glycoprotein: TGEV transmembrane protein E1. 111th Meeting of the Society for General Microbiology; Warwick, 11–14 April 1988; 1988. [Google Scholar]
  18. Laude H., Gelfi J., Rasschaert D., Delmas B. Caractérisation antigénique du coronavirus respiratoire porcin à l'aide d'anticorps monoclonaux dirigés contre le virus de la Gastroentérite Transmissible. Journ. Rech. Porcine en France. 1988;20:89–94. [Google Scholar]
  19. Pensaert M., Callebaut P., Vergote J. Isolation of a porcine respiratory, non enteric coronavirus related to transmissible gastroenteritis. The Vet. Quart. 1986;8:257–261. doi: 10.1080/01652176.1986.9694050. [DOI] [PubMed] [Google Scholar]
  20. Rasschaert D., Laude H. The predicted primary stucture of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  21. Rasschaert D., Gelfi J., Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie. 1987;69:591–600. doi: 10.1016/0300-9084(87)90178-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rottier P.J., Welling G.W., Weeling-Wester S., Niesters H.G., Lenstra J.A., Van der Zeijst B.A.M. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986;25:1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
  23. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  24. Wesley R.D., Woods R.D. Identification of a 17000 molecular weight antigenic polypeptide in transmissible gastroenteritis virus-infected cells. J. Gen. Virol. 1986;67:1419–1425. doi: 10.1099/0022-1317-67-7-1419. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES