Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;11(1):41–49. doi: 10.1016/0378-1135(86)90005-2

Resistance of Berne virus to physical and chemical treatment

M Weiss 1, MC Horzinek 2
PMCID: PMC7117442  PMID: 3518225

Abstract

Thermal inactivation of Berne virus proceeded at a linear rate between 31°C and 43°C. Storage at temperatures lower than −20°C preserved the infectivity, while at 4°C appreciable loss occurred between 92 and 185 days. Freeze-drying or desiccation at 22°C caused only insignificant loss of infectivity. Virus preparations were not affected by pH values between 2.5 and 10.3. Inactivation by UV occurred more rapidly than with herpes, toga and rhabdoviruses. Berne virus infectivity was sensitive to pronase and B. subtilis proteinase. It was not inactivated by trypsin and chymotrypsin treatment, which resulted in enhancement of infectivity; low concentrations of pronase (< 10 μg ml−1) had a similar effect on Berne virus. Neither phospholipase C or RNase, alone or in combination, nor sodium deoxycholate (0.1%) inactivated the virus; in contrast, Triton X-100 (0.1%, 1.0%) caused rapid inactivation with a constant level of residual infectivity.

References

  1. Andrewes C., Pereira H.G., Wildy P. 4th Ed. Bailliere Tindall; London: 1978. Viruses of Vertebrates. [Google Scholar]
  2. Bachrach H.L., Breese S.S., Callis J.J., Hess W.B., Patty R.E. Vol. 95. 1957. Inactivation of foot-and-mouth disease virus by pH and temperature changes and by formaldehyde; pp. 147–152. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  3. Beards G.M., Hall C., Green S., Flewett T.H., Lamouliatte F., Du Pasquier P. An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves. Lancet. 1984:1050–1052. doi: 10.1016/S0140-6736(84)91454-5. May. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dimmock N.J. Differences between the thermal inactivation of picornaviruses at ‘high’ and ‘low’ temperatures. Virology. 1967;31:338–353. doi: 10.1016/0042-6822(67)90179-1. [DOI] [PubMed] [Google Scholar]
  5. Dougherty R.M. Heat inactivation of Rous sarcoma virus. Virology. 1961;14:371–372. doi: 10.1016/0042-6822(61)90321-x. [DOI] [PubMed] [Google Scholar]
  6. Flemming P. Thermal inactivation of Semliki Forest virus. J. Gen. Virol. 1971;13:385–391. doi: 10.1099/0022-1317-13-3-385. [DOI] [PubMed] [Google Scholar]
  7. Horzinek M.C. Academic Press; London, New York: 1981. Non-arthropod-borne togaviruses; pp. 1–200. [Google Scholar]
  8. Horzinek M.C. Nonarbo animal togaviruses and control perspectives. In: Kurstak E., Marusyk R.G., editors. Control of Virus Diseases. Marcel Dekker Inc; New York, Basel: 1984. pp. 163–177. [Google Scholar]
  9. Horzinek M.C., Mussgay M. Studies on the nucleocapsid structure of a group A arbovirus. J. Virol. 1969;4:514–520. doi: 10.1128/jvi.4.4.514-520.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horzinek M.C., Weiss M. Toroviridae: a taxonomic proposal. Zbl. Vet. Med. B. 1984;31:649–659. [PubMed] [Google Scholar]
  11. Horzinek M.C., Weiss M., Ederveen J. Berne virus is not ‘coronavirus-like’. J. Gen. Virol. 1984;65:645–649. doi: 10.1099/0022-1317-65-3-645. [DOI] [PubMed] [Google Scholar]
  12. Horzinek M.C., Weiss M., Ederveen J. The nucleocapsid of Berne virus. J. Gen. Virol. 1985;66:1287–1296. doi: 10.1099/0022-1317-66-6-1287. [DOI] [PubMed] [Google Scholar]
  13. Jacobs L., Spaan W.J.M., Horzinek M.C., Van Der Zeijst B.A.M. Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: evidence from UV transcription mapping. J. Virol. 1981;39:401–406. doi: 10.1128/jvi.39.2.401-406.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laude H. Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus. J. Gen. Virol. 1981;56:235–240. doi: 10.1099/0022-1317-56-2-235. [DOI] [PubMed] [Google Scholar]
  15. Matthews R.E.F. 4th Report of the International Committee on Taxonomy of Viruses. Karger; Basel: 1982. Classification and nomeclature of viruses. [Google Scholar]
  16. Moussa A., Dannacher G., Fedida M. Nouveaux virus intervenant dans l'étiologie des entérites néonatales des bovins. Rech. Med. Vet. 1983;159:185–190. [Google Scholar]
  17. Pohlenz J.F.L., Cheville N.F., Woode G.N., Mokresh A.H. Cellular lesions in intestinal mucosa of gnotobiotic calves experimentally infected with a new unclassified bovine virus (Breda virus) Vet. Pathol. 1984;21:407–417. doi: 10.1177/030098588402100407. [DOI] [PubMed] [Google Scholar]
  18. Teorell T., Stenhagen E. Ein Universalpuffer fuer den pH-Bereich 2.0 bis 12.0. Biochem. Zeitschr. 1938;299:416–419. [Google Scholar]
  19. Walder R., Liprandi F. Kinetics of inactivation of Venezuelan equine encephalitis virus. Arch. Virol. 1976;51:307–317. doi: 10.1007/BF01317934. [DOI] [PubMed] [Google Scholar]
  20. Weiss M., Steck F., Horzinek M.C. Purification and partial characterization of a new enveloped RNA virus (Berne virus) J. Gen. Virol. 1983;64:1849–1858. doi: 10.1099/0022-1317-64-9-1849. [DOI] [PubMed] [Google Scholar]
  21. Weiss M., Steck F., Kaderli R., Horzinek M.C. Antibodies to Berne virus in horses and other animals. Vet. Microbiol. 1984;9:523–531. doi: 10.1016/0378-1135(84)90014-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woode G.N., Reed D.E., Runnels P.L., Herrig M.A., Hill H.T. Studies with an unclassified virus isolated from diarrheic calves. Vet. Microbiol. 1982;7:221–240. doi: 10.1016/0378-1135(82)90036-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES