Abstract
The homotypic and heterotypic antibody response to rotavirus was determined in three pony mares and their foals. The normal concentrations of anti-rotavirus antibodies in mares ‘milk and mares’ and foals′ serum over the first 10 weeks post-partum were measured using IgA, IgG and rotavirus sero-type-specific enzyme linked immunosorbent assays. Experimental infection of the foals with serotype 3 equine rotavirus produced a rapid, serotype-specific response which peaked 10 days after infection and a slower heterotypic response which peaked 32 days later. In contrast, vaccination of the mares with an inactivated, adjuvanted serotype 6 bovine rotavirus produced a heterotypic response similar to that of the homotypic response in both serum and milk, although the predominant response in serum was IgG, while in milk it was IgA. These results suggest that non serotype-restricted passive protection of foals against rotavirus may be achieved by parenteral vaccination of mares.
References
- Beards G.M., Desselberger U. Determination of rotavirus serotype-specific antibodies in sera by competitive enhanced enzyme immunoassay. J. Virol. Methods. 1989;24:103–110. doi: 10.1016/0166-0934(89)90012-8. [DOI] [PubMed] [Google Scholar]
- Bernstein D.I., McNeal M.M., Schiff G.M., Ward R.L. Induction and persistence of local rotavirus antibodies in relation to serum antibodies. J. Med. Virol. 1989;28(2):90–95. doi: 10.1002/jmv.1890280207. [DOI] [PubMed] [Google Scholar]
- Bishop R.F., Cipriani E., Lund J.S., Barnes G.L., Hosking C.S. Estimation of rotavirus immunoglobulin G antibodies in human serum samples by enzyme-linked immunosorbent assay: expression of results as units derived from a standard curve. J. Clin. Micro. 1984;19:447–452. doi: 10.1128/jcm.19.4.447-452.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brussow H., Wather I., Fryder V., Sidoti J., Bruttin A. Cross-neutralizing antibodies induced by single serotype vaccination of cows with rotavirus. J. Gen. Virol. 1988;69:1647–1658. doi: 10.1099/0022-1317-69-7-1647. [DOI] [PubMed] [Google Scholar]
- Chanock R.M., Murphy B.R., Collins P.L., Coelingh K.V.W., Olmsted R.A., Synder M.H., Spriggs M.K., Prince G.A., Moss B., Flores J., Gorziglia M., Kapikian A.Z. Live viral vaccines for respiratory and enteric tract diseases. Vaccine. 1988;6:129–133. doi: 10.1016/s0264-410x(88)80014-8. [DOI] [PubMed] [Google Scholar]
- Conner M.E., Darlington R.W. Rotavirus infection of foals. Am. J. Vet. Res. 1980;41:1699–1703. [PubMed] [Google Scholar]
- Dwyer R.M., Powell D., Lyons E., Donahue J.M., Roberts A.W., Osborne M. The actiology of infectious diarrhoea in throughbred foals in central Kentucky. Equine Vet. J. Suppl. 1988;5:59–60. [Google Scholar]
- Estes M.K., Conner M.E., Gilger M.A., Graham D.Y. Molecular biology and immunology of rotavirus infections. Immunol. Invest. 1989;18:571–581. doi: 10.3109/08820138909112264. [DOI] [PubMed] [Google Scholar]
- Fahey K.J., Snodgrass D.R., Campbell I., Dawson A.M., Burrells C. IgG1 antibody in milk protects lambs against rotavirus diarrhoe. Vet. Immun. Immunopathol. 1981;2:27–33. doi: 10.1016/0165-2427(81)90036-2. [DOI] [PubMed] [Google Scholar]
- Gillespie J., Kalica A., Cenner M., Schiff E., Barr M., Holmes D., Frey M. The isolation, propagation and characterization of tissue-cultured equine rotaviruses. Vet. Microbiol. 1984;9:1–14. doi: 10.1016/0378-1135(84)90074-9. [DOI] [PubMed] [Google Scholar]
- Herbst V.W., Zchock M., Hamman H.-P., Lange H., Weiss R., Danner K., Schliesser T. Zum vorkommen von rotavirus und fimbrien-tragenden E. coli-stammen bei Fohlen mit diarrhoe. Berl. Munch. Tieraztl. Wschr. 1987;100:364–366. [PubMed] [Google Scholar]
- Herring A.J., Inglis N.F., Ojeh C.K., Snodgrass D.R., Menzies J.D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleicacid in silver-stained polyacrylamide gels. J. Clin. Microbiol. 1982;16:473–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins W.P., Gillespie S.H., Schiff E.I., Pennow N.N., Tanneberger M.J. Infectivity and immunity studies in foals with cell culture-propagated equine rotaviruses. In: Powell D., editor. Equine Infectious Diseases V. Proc. 5th Int. Conf. University Press of Kentucky; 1988. pp. 241–247. [Google Scholar]
- Hoshino Y., Wyatt R.G., Greenberg H.B., Kalica A.R., Flores J., Kapikian A.Z. Isolation, propagation, and characterization of a second equine rotavirus serotype. Infect. Immun. 1983;41:1031–1037. doi: 10.1128/iai.41.3.1031-1037.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshino Y., Wyatt R.G., Greenberg H.B., Flores J., Kapikian A.Z. Serotypic similarity and diversity of rotaviruses of mammalian and avian origin as studied by plaque-reduction neutralization. J. Infect. Dis. 1984;149:649–702. doi: 10.1093/infdis/149.5.694. [DOI] [PubMed] [Google Scholar]
- Imagawa H., Wada R., Kamada M., Kumanomido T., Fukunaga Y., Hirasawa K. Experimental infection of equine rotavirus in foals. Bull. Equine Res. Inst. 1984;21:65–71. [Google Scholar]
- Kalica A.R., Greenberg H.B., Wyatt R.G., Flores J., Sereno M.M., Kapikian A.Z., Chanock R.M. Genes of human (strain Wa) and bovine (strain UK) rotaviruses that code for neutralization and subgroup antigens. Virology. 1981;112:385–390. doi: 10.1016/0042-6822(81)90285-3. [DOI] [PubMed] [Google Scholar]
- Kanitz C.L. Proc. Am. Equine Practitioners Assoc. 22nd. 1976. Identification of an equine rotavirus as a cause of neonatal foal diarrhoea; pp. 155–165. [Google Scholar]
- Lascelles A.K. Vol. 41. 1977. Role of the mammary gland and milk in immunology; pp. 241–260. (Symp. Zool. Soc. Lond.). [Google Scholar]
- MacDougall D.F., Dunlop E.M. The metabolism of IgG(T) in the newborn foal. Res. Vet. Sci. 1974;17:260–262. [PubMed] [Google Scholar]
- McGuire T.C., Crawford T.B. Passive immunity in the foal: measurement of immunoglobulin classes and specific antibody. Am. J. Vet. Res. 1973;34:1299–1303. [PubMed] [Google Scholar]
- McLean B., Sonza S., Holmes I.H. Measurement of immunoglobulin A, G and M class rotavirus antibodies in serum and mucosal secretion. J. Clin. Microbiol. 1980;12:272–278. doi: 10.1128/jcm.12.3.314-319.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNulty M.S., Logan E.F. Effect of vaccination of the dam on rotavirus infection in young calves. Vet. Rec. 1987;120:250–252. doi: 10.1136/vr.120.11.250. [DOI] [PubMed] [Google Scholar]
- Mackow E.R., Shaw R.D., Matsui S.M., Vo P.T., Benfield D.A., Greenberg H.B. Characterization of homotypic and heterotypic VP7 neutralization sites of rhesus rotavirus. Virology. 1988;165:511–517. doi: 10.1016/0042-6822(88)90595-8. [DOI] [PubMed] [Google Scholar]; Mackow E.R., Shaw R.D., Matsui S.M., Vo P.T., Benfield D.A., Greenberg H.B. Characterization of homotypic and heterotypic VP7 neutralization sites of rhesus rotavirus. Virology. 1988;167(2):660. doi: 10.1016/0042-6822(88)90595-8. published erratum appears in. [DOI] [PubMed] [Google Scholar]
- Montgomery P.C., Khaleel S.A., Kenney R.M. Proc. Int. Conf. Equine Infectious Dis. 4th. 1978. Induction and characterization of equine secretory antibodies; pp. 177–187. [Google Scholar]
- Pahud J.J., Mach J-P. Equine secretory IgA and secretory component. Int. Arch. Allergy Appl. Immunol. 1972;42:175–186. doi: 10.1159/000230604. [DOI] [PubMed] [Google Scholar]
- Reilly W.J., Macdougall D.F. The metabolism of IgG in the newborn foal. Res. Vet. Sci. 1973;14:136–137. [PubMed] [Google Scholar]
- Rouse B.T., Ingram D.G. The total protein and immunoglobulin profile of equine colostrum and milk. Immunology. 1970;19:901–907. [PMC free article] [PubMed] [Google Scholar]
- Saif L.J. Passive immunity to coronavirus and rotavirus infections in swine and cattle: enhancement by material vaccination. In: Tzipori S., editor. Infectious Diarrhoea in the Young. Elsevier; Amsterdam: 1985. pp. 456–467. [Google Scholar]
- Saif L.J., Bohl E.H. Passive immunity to transmissible gastroenteritis virus: intramammary viral inoculation of sows. Ann. N.Y. Acad. Sci. 1982;409:708–723. doi: 10.1111/j.1749-6632.1983.tb26910.x. [DOI] [PubMed] [Google Scholar]
- Shafren D.R., Tannock G.A., Roberts T.K. Development and application of an ELISA technique for the detection of antibody to avian encephalomyelitis viruses. Res. in Vet. Sci. 1989;46:95–99. [PubMed] [Google Scholar]
- Shaw R.D., Stoner-Ma D.L., Estes M.K., Greenberg H.B. Specific enzyme-linked immunoassay for rotavirus serotypes 1 and 3. J. Clin. Microbiol. 1985;22:286–291. doi: 10.1128/jcm.22.2.286-291.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw R.D., Vo P.T., Offit P.A., Coulson B.S., Greenberg H.B. Antigenic mapping of the surface proteins of rhesus rotavirus. Virology. 1986;155:434–451. doi: 10.1016/0042-6822(86)90205-9. [DOI] [PubMed] [Google Scholar]
- Shaw R.D., Fong K.J., Losonsky G.A., Levine M.M., Maldonado Y., Yolken R., Flores J., Kapikian A.Z., Vo P.T., Greenberg H.B. Epitope-specific immune responses to rotavirus vaccination. Gastroenterology. 1987;93:941–950. doi: 10.1016/0016-5085(87)90555-5. [DOI] [PubMed] [Google Scholar]
- Snodgrass D.R. Evaluation of a combined rotavirus and enterotoxigenic Escherichia coli vaccine in cattle. Vet. Rec. 1986;119:39–43. doi: 10.1136/vr.119.2.39. [DOI] [PubMed] [Google Scholar]
- Snodgrass D.R., Ojeh C.K., Campbell I., Herring A.J. Bovine rotavirus serotypes and their significance for immunization. J. Clin. Microbiol. 1984;20:342–346. doi: 10.1128/jcm.20.3.342-346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snodgrass D.R., Fitzgerald T., Campbell I., Scott F.M.M., Browning G.F., Miller D.I., Greenberg H.B. Herring A.J. Rotavirus serotypes 6 and 10 predominate in cattleJ. Clin. Microbiol. 1990;28:504–507. doi: 10.1128/jcm.28.3.504-507.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svennerholm A.M., Hanson L.A., Holmgren J., Lindblad B.S., Nilsson B., Quereshi F. Different secretory immunoglobulin A antibody response to cholera vaccination in Swedish and Pakistani women. Infect. Immun. 1980;30:427–430. doi: 10.1128/iai.30.2.427-430.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
