Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;39(3):299–311. doi: 10.1016/0378-1135(94)90166-X

More than one component of the Newcastle disease virus particle is capable of interferon induction

Karin Wertz 1,, Mathias Büttner 1, Anton Mayr 1, O-R Kaaden 1
PMCID: PMC7117571  PMID: 7518987

Abstract

The interferon (IFN)-inducing capacities of intact NDV virions, β-propiolactone-inactivated particles and several structural components were compared, using human PBML as the IFN producing cells. Intact and inactivated virions as well as the nucleocapsid fraction did not differ significantly in their IFN-inducing capacity. In contrast, genomic RNA as well as M protein fraction and envelopes induced IFN titres to a level of about 10% of those achieved with virions. NDV-induced IFN production could be blocked specifically by incubation with polychonal anti-NDV-monoclonal antibodies (mAbs) and with two of three anti-HN-mAbs, but not with anti-NDV-mAbs directed against the F, M or NP protein. In addition, IFN induction by fixed MDBK cells, expressing NDV surface proteins after infection with NDV Ulster, was inhibited by one of two anti-F-mAbs. The results suggest that the induction of IFN synthesis in human PBML is a complex process involving not only the HN protein but also the uncleaved F protein precursor, a component of the M protein fraction and — once having entered the cell — the genomic RNA.

Keywords: Newcastle disease virus, Interferon induction, Poultry

References

  1. Böyum A. Isolation of mononuclear cells and granulocytes from blood. Scand. J. Clin. Lab. Invest. Suppl. 1968;21:77–89. [PubMed] [Google Scholar]
  2. Capobianchi M.R., Malavasi F., Di Marco P., Dianzani F. Differences in the mechanism of induction of interferon-alpha by Herpes simplex virus and Herpes simplex virus-infected cells. Arch. Virol. 1988;103:219–229. doi: 10.1007/BF01311094. [DOI] [PubMed] [Google Scholar]
  3. Charley B., Laude H. Induction of alpha interferon by Transmissible gastroenteritis Coronavirus: Role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Czerny C.-P., Mahnel H. Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibodies. J. Gen. Virol. 1990;71:2341–2352. doi: 10.1099/0022-1317-71-10-2341. [DOI] [PubMed] [Google Scholar]
  5. Faaberg K.S., Peeples M.E. Strain variation and nuclear association of Newcastle disease virus matrix protein. J. Virol. 1988;62:586–593. doi: 10.1128/jvi.62.2.586-593.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faaberg K.S., Peeples M.E. Association of soluble matrix protein of Newcastle disease virus with liposomes is independent of ionic conditions. Virology. 1988;166:123–132. doi: 10.1016/0042-6822(88)90153-5. [DOI] [PubMed] [Google Scholar]
  7. Gandhi S.S., Burke D.C. Interferon production by Myxoviruses in chick embryo cells. J. Gen. Virol. 1970;6:95–103. doi: 10.1099/0022-1317-6-1-95. [DOI] [PubMed] [Google Scholar]
  8. Gandhi S.S., Burke D.C., Scholtissek C. Virus RNA synthesis by ultraviolet-irradiated Newcastle disease virus and interferon production. J. Gen. Virol. 1970;9:97–99. doi: 10.1099/0022-1317-9-1-97. [DOI] [PubMed] [Google Scholar]
  9. Ito Y., Hosaka Y. Component(s) of Sendai virus that can induce interferon in mouse spleen cells. Infect. Immun. 1983;39:1019–1023. doi: 10.1128/iai.39.3.1019-1023.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito Y., Nagai Y., Maeno K. Interferon production in mouse spleen cells and mouse fibroblasts (L cells) stimulated by various strains of Newcastle disease virus. J. Gen. Virol. 1982;62:349–352. doi: 10.1099/0022-1317-62-2-349. [DOI] [PubMed] [Google Scholar]
  11. Jacobsen K.L., Abolhassani M., Chitwood S. Effect of Sendai inducing virus in cytopathic effect inhibition assay of bovine leukocyte interferon. Vet. Immunol. Immunopathol. 1988;18:237–244. doi: 10.1016/0165-2427(88)90068-2. [DOI] [PubMed] [Google Scholar]
  12. Jestin V., Cherbonnel M. Interferon-induction in mouse spleen cells by the Newcastle disease virus (NDV) HN protein. Ann. Rech. Vet. 1991;22:365–372. [PubMed] [Google Scholar]
  13. Kawahara N., Yang X.Z., Sakaguchi T., Kiyotani K., Nagai Y., Yoshida T. Distribution and substrate specificity of intracellular proteolytic processing enzyme(s) for Paramyxovirus fusion glycoproteins. J. Gen. Virol. 1992;73:583–590. doi: 10.1099/0022-1317-73-3-583. [DOI] [PubMed] [Google Scholar]
  14. Klein F., Ricketts R.T., Jones W.I., Clark P. Induction potential of Sendai virus and newcastle disease virus for human lymphoblastoid interferon production. J. Interferon Res. 1984;4:243–270. doi: 10.1089/jir.1984.4.243. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lebon P. Inhibition of Herpes simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol. 1985;66:2781–2786. doi: 10.1099/0022-1317-66-12-2781. [DOI] [PubMed] [Google Scholar]
  17. Loh D., Ross A.H., Hale A.H., Baltimore D., Eisen H.N. Synthetic phospholipid vesicles containing a purified viral antigen and cell membrane proteins stimulate the development of cytotoxic T lymphocytes. J. Exp. Med. 1979;150:1067–1074. doi: 10.1084/jem.150.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lomniczi B. Studies on interferon production and interferon sensitivity of different strains of Newcastle disease virus. J. Gen. Virol. 1973;21:305–313. doi: 10.1099/0022-1317-21-2-305. [DOI] [PubMed] [Google Scholar]
  19. Mayr A., Bachmann P.A., Bibrack B., Wittmann G. VEB Fischer Verlag; Jena: 1977. Virologische Arbeitsmethoden Band 2: Serologie. [Google Scholar]
  20. Meager A., Burke D.C. Production of interferon by ultraviolet radiation inactivated Newcastle disease Virus. Nature. 1972;235:280–282. doi: 10.1038/235280a0. [DOI] [PubMed] [Google Scholar]
  21. Merril C.R., Goldman D., Sedman S.A., Ebert M.H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981;211:1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  22. Millar N.S., Chambers P., Emmerson P. Nucleotide sequence of the fusion and hemagglutinin-neuraminidase glycoprotein genes of Newcastle disease virus, strain Ulster: Molecular basis for variations in pathogenicity between strains. J. Gen. Virol. 1988;69:613–620. doi: 10.1099/0022-1317-69-3-613. [DOI] [PubMed] [Google Scholar]
  23. Nagai Y., Klenk H.-D. Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology. 1977;77:125–134. doi: 10.1016/0042-6822(77)90412-3. [DOI] [PubMed] [Google Scholar]
  24. Nagai Y., Klenk H.-D., Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494–508. doi: 10.1016/0042-6822(76)90178-1. [DOI] [PubMed] [Google Scholar]
  25. NIH-Research Reference Reagent Note No. 311984. Freeze-dried reference human recombinant alpha 2 Interferon, Catalog Number, Gxa01-901-535, Research Resources Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland 20205
  26. Nishikawa K., Hanada N., Morishima T., Yoshida T., Hamaguchi M., Toyoda T., Nagai Y. Antigenic characterization of the internal proteins of Newcastle disease virus by monoclonal antibodies. Virus Res. 1987;7:83–92. doi: 10.1016/0168-1702(87)90059-1. [DOI] [PubMed] [Google Scholar]
  27. Peeples M.E., Wang C., Gupta K.C., Coleman N. Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J. Virol. 1992;66:3263–3269. doi: 10.1128/jvi.66.5.3263-3269.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Portner A., Kingsbury D.W. Complementary RNAs in Paramyxovirions and Paramyxovirus-infected cells. Nature. 1970;228:1196–1197. doi: 10.1038/2281196a0. [DOI] [PubMed] [Google Scholar]
  29. Rubinstein S., Familletti P.C., Pestka S. Convenient assay for interferons. J. Virol. 1981;37:755–758. doi: 10.1128/jvi.37.2.755-758.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sambrook J., Fritsch E.F., Maniatis T., editors. Vol. 2. Cold Spring Harbor Laboratory Press; 1989. (Molecular cloning. A laboratory manual). [Google Scholar]
  31. Sato H., Hattori S., Ishida N., Imamura Y., Kawakita M. Nucleotide sequence of the hemagglutinin-neuraminidase gene of newcastle disease virus avirulent strain D26: evidence for a longer coding region with a carboxyl terminal extension as compared to virulent strains. Virus Res. 1987;8:217–232. doi: 10.1016/0168-1702(87)90017-7. [DOI] [PubMed] [Google Scholar]
  32. Scheid A., Choppin P.W. Isolation and purification of the envelope proteins of Newcastle disease virus. J. Virol. 1973;11:263–271. doi: 10.1128/jvi.11.2.263-271.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sheaff E.T., Meager A., Burke D.C. Factors involved in the production of interferon by inactivated Newcastle disease virus. J. Gen. Virol. 1972;17:163–175. doi: 10.1099/0022-1317-17-2-163. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4354–4650. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Umino Y., Kohama T., Sato T.A., Sugiura A. Protective effect of monoclonal antibodies to Newcastle disease virus in passive immunization. J. Gen. Virol. 1990;71:1199–1203. doi: 10.1099/0022-1317-71-5-1199. [DOI] [PubMed] [Google Scholar]
  36. Umino Y., Kohama T., Sato T.a., Sugiura A., Klenk H.-D., Rott R. Monoclonal antibodies to three structural proteins of Newcastle disease virus: Biological characterization with particular reference to the conformational change of envelope glycoproteins associated with proteolytic cleavage. J. Gen. Virol. 1990;71:1189–1197. doi: 10.1099/0022-1317-71-5-1189. [DOI] [PubMed] [Google Scholar]
  37. Volsky D.J., Loyter A. An efficient method for reassembly of fusogenic Sendai virus envelopes after solubilization of intact virions with Triton X-100. FEBS Lett. 1978;92:190–194. doi: 10.1016/0014-5793(78)80751-0. [DOI] [PubMed] [Google Scholar]
  38. Von Hoegen P., Weber E., Schirrmacher V. Modification of the tumor-specific T cell response in the absence of an antiviral response. Eur. J. Immunol. 1988;18:1159–1166. doi: 10.1002/eji.1830180803. [DOI] [PubMed] [Google Scholar]
  39. Weisong Z., Xiufan L. Neutralization activities of monoclonal antibodies with specificity to fusion protein and hemagglutinin-neuraminidase of Newcastle disease virus. Chinese J. Virol. 1991;7:23–29. [Google Scholar]
  40. Xiulong X., Xiufan L. Monoclonal antibodies to Newcastle disease virus and their use in the detection of antigenic variation. Chinese J., Virol. 1988;4:39–44. [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy of Elsevier

RESOURCES