Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2016 Apr 7;25(Suppl 2):53–61. [Article in French] doi: 10.1007/s13546-016-1188-1

La modulation de la signature transcriptomique de l’hôte infecté : une nouvelle stratégie thérapeutique dans les viroses graves ? Exemple de la grippe

Modulation of transcriptomic signature of the infected host: a new therapeutic strategy for the management of severe viral infections? Example of the flu

J Poissy 1,2,, O Terrier 3, B Lina 3,4, J Textoris 5,6, M Rosa-Calatrava 3
PMCID: PMC7117810  PMID: 32288744

Résumé

Ces dernières décennies ont été marquées par l’émergence ou la réémergence de virus responsables d’épidémies ou de pandémies plus ou moins sévères. Les stratégies préventives sont prises à défaut, et l’arsenal antiviral curatif est limité d’autant plus que les résistances virales peuvent apparaître rapidement. Par ailleurs, le développement de nouvelles molécules nécessite un délai incompatible avec la réponse rapide nécessaire lors d’une épidémie d’envergure ou d’une pandémie. C’est la raison pour laquelle de nouvelles approches thérapeutiques sont nécessaires. Un concept novateur est le repositionnement de molécules déjà sur le marché en exploitant leur capacité à inverser la réponse transcriptomique cellulaire de l’hôte infecté. En identifiant des molécules qui visent l’hôte et non le virus, cette stratégie permet d’avoir un large spectre d’action et d’être potentiellement actif sur de nouveaux variants. La mise en place de cette stratégie nécessite de caractériser les réponses cellulaires spécifiques de l’infection virale d’intérêt, de cribler in silico des molécules candidates, de les tester sur modèles cellulaires et animaux, avant d’envisager des essais cliniques chez l’homme. Nous présenterons cette démarche en prenant pour exemple l’infection grippale.

Mots clés: Viroses, Grippe, Transcriptome, Repositionnement de médicaments

Footnotes

J. Textoris et M. Rosa-Calatrava sont “equally contributing authors” sur cet article.

Références

  • 1.Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:983–9. doi: 10.1098/rstb.2001.0888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Woolhouse M, Gaunt E. Ecological origins of novel human pathogens. Critical reviews in microbiology. 2007;33:231–42. doi: 10.1080/10408410701647560. [DOI] [PubMed] [Google Scholar]
  • 3.Woolhouse ME, Howey R, Gaunt E, et al. Temporal trends in the discovery of human viruses. Proc Biol Sci. 2008;275:2111–5. doi: 10.1098/rspb.2008.0294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Cheng VC, Lau SK, Woo PC, et al. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiol Rev. 2007;20:660–94. doi: 10.1128/CMR.00023-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386:995–1007. doi: 10.1016/S0140-6736(15)60454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Legand A, Briand S, Shindo N, et al. Addressing the public health burden of respiratory viruses: the battle against respiratory viruses (BRaVe) initiative. Future Virol. 2013;8:953–68. doi: 10.2217/fvl.13.85. [DOI] [Google Scholar]
  • 7.Jain S, Self WH, Wunderink RG, et al. Communityacquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373:415–27. doi: 10.1056/NEJMoa1500245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis. 2011;52:S284–S9. doi: 10.1093/cid/cir043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Shaw ML, Palese P. Orthomyxoviridae. In: Knipe DM, Howley PM, editors. Fields Virol. Philadelphia, USA: Lippincott Williams & Wilkins; 2006. pp. 1151–85. [Google Scholar]
  • 10.Hutchinson E v, Kirchbach JC, Gog JR, et al. Genome packaging in influenza A virus. J Gen Virol. 2010;91:313–28. doi: 10.1099/vir.0.017608-0. [DOI] [PubMed] [Google Scholar]
  • 11.Zimmer SM, Burke DS. Historical perspective — Emergence of influenza A(H1N1) viruses. N Engl J Med. 2009;361:279–85. doi: 10.1056/NEJMra0904322. [DOI] [PubMed] [Google Scholar]
  • 12.Bonmarin I, Belchior E, Bergounioux J, et al (2016) Intensive care unit surveillance of influenza infection in France: the 2009/10 pandemic and the three subsequent seasons. Euro Surveill (in press) [DOI] [PubMed]
  • 13.Ortiz JR, Neuzil KM, Shay DK, et al. The burden of influenza-associated critical illness hospitalizations. Crit Care Med. 2014;42:2325–32. doi: 10.1097/CCM.0000000000000545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Streng A, Prifert C, Weissbrich B, et al. Continued high incidence of children with severe influenza A(H1N1)pdm09 admitted to paediatric intensive care units in Germany during the first three post-pandemic influenza seasons, 2010/11–2012/13. BMC Infect Dis. 2015;15:573. doi: 10.1186/s12879-015-1293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Callaghan WM, Creanga AA, Jamieson DJ. Pregnancyrelated mortality resulting from influenza in the United States during the 2009–2010 pandemic. Obstet Gynecol. 2015;126:486–90. doi: 10.1097/AOG.0000000000000996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Alshammari TM, AlFehaid LS, AlFraih JK, et al. Health care professionals’ awareness of, knowledge about and attitude to influenza vaccination. Vaccine. 2014;32:5957–61. doi: 10.1016/j.vaccine.2014.08.061. [DOI] [PubMed] [Google Scholar]
  • 17.Wicker S, Rabenau H v, Gierke L, et al. Hepatitis B and influenza vaccines: important occupational vaccines differently perceived among medical students. Vaccine. 2013;31:5111–7. doi: 10.1016/j.vaccine.2013.08.070. [DOI] [PubMed] [Google Scholar]
  • 18.Catania J, Que LG, Govert JA, et al. High intensive care unit admission rate for 2013–2014 influenza is associated with a low rate of vaccination. Am J Respir Crit Care Med. 2014;189:485–7. doi: 10.1164/rccm.201401-0066LE. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Gilca R, Skowronski DM, Douville-Fradet M, et al. Midseason estimates of influenza vaccine effectiveness against influenza A(H3N2) hospitalization in the elderly in Quebec, Canada, January 2015. PloS One. 2015;10:e0132195. doi: 10.1371/journal.pone.0132195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Haveri A, Ikonen N, Julkunen I, et al. Reduced crossprotection against influenza A(H3N2) subgroup 3C.2a and 3C.3a viruses among Finnish healthcare workers vaccinated with 2013/14 seasonal influenza vaccine. Euro Surveill. 2015;20:21028. doi: 10.2807/1560-7917.ES2015.20.5.21028. [DOI] [PubMed] [Google Scholar]
  • 21.Beigel JH. Influenza. Crit Care Med. 2008;36:2660–6. doi: 10.1097/CCM.0b013e318180b039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bright RA, Medina MJ, Xu X, et al. Incidence of adamantane resistance among influenza A(H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet. 2005;366:1175–81. doi: 10.1016/S0140-6736(05)67338-2. [DOI] [PubMed] [Google Scholar]
  • 23.Bright RA, Shay DK, Shu B, et al. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA. 2006;295:891–4. doi: 10.1001/jama.295.8.joc60020. [DOI] [PubMed] [Google Scholar]
  • 24.Hayden FG. Antiviral resistance in influenza viruses-implications for management and pandemic response. N Engl J Med. 2006;354:785–8. doi: 10.1056/NEJMp068030. [DOI] [PubMed] [Google Scholar]
  • 25.Kaiser L, Wat C, Mills T, et al. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch Intern Med. 2003;163:1667–72. doi: 10.1001/archinte.163.14.1667. [DOI] [PubMed] [Google Scholar]
  • 26.Nicholson KG, Aoki FY, Osterhaus AD, et al. Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Neuraminidase Inhibitor Flu Treatment Investigator Group. Lancet. 2000;355:1845–50. doi: 10.1016/S0140-6736(00)02288-1. [DOI] [PubMed] [Google Scholar]
  • 27.Treanor JJ, Hayden FG, Vrooman PS, et al. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. US Oral Neuraminidase Study Group. JAMA. 2000;283:1016–24. doi: 10.1001/jama.283.8.1016. [DOI] [PubMed] [Google Scholar]
  • 28.Hayden FG, Treanor JJ, Fritz RS, et al. Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA. 1999;282:1240–6. doi: 10.1001/jama.282.13.1240. [DOI] [PubMed] [Google Scholar]
  • 29.Walker JB, Hussey EK, Treanor JJ, et al. Effects of the neuraminidase inhibitor zanamavir on otologic manifestations of experimental human influenza. J infect Dis. 1997;176:1417–22. doi: 10.1086/514136. [DOI] [PubMed] [Google Scholar]
  • 30.McGeer A, Green KA, Plevneshi A, et al. Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis. 2007;45:1568–75. doi: 10.1086/523584. [DOI] [PubMed] [Google Scholar]
  • 31.Welch SC, Lam SW, Neuner EA, et al. High-dose versus standard dose oseltamivir for treatment of severe influenza in adult intensive care unit patients. Intensive Care Med. 2015;41:1365–6. doi: 10.1007/s00134-015-3816-z. [DOI] [PubMed] [Google Scholar]
  • 32.Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005;353:1363–73. doi: 10.1056/NEJMra050740. [DOI] [PubMed] [Google Scholar]
  • 33.de Jong MD, Tran TT, Truong HK, et al. Oseltamivir resistance during treatment of influenza A(H5N1) infection. N Engl J Med. 2005;353:2667–72. doi: 10.1056/NEJMoa054512. [DOI] [PubMed] [Google Scholar]
  • 34.Le QM, Kiso M, Someya K, et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature. 2005;437:1108. doi: 10.1038/4371108a. [DOI] [PubMed] [Google Scholar]
  • 35.Escuret V, Frobert E, Bouscambert-Duchamp M, et al. Detection of human influenza A(H1N1) and B strains with reduced sensitivity to neuraminidase inhibitors. J Clin Virol. 2008;41:25–8. doi: 10.1016/j.jcv.2007.10.019. [DOI] [PubMed] [Google Scholar]
  • 36.Hoang V M, Nguyen CT, le Nguyen KH, et al. Oseltamivir resistance among influenza viruses: surveillance in northern Viet Nam, 2009–2012. Western Pac Surveill Response J (WPSAR) 2013;4:25–9. doi: 10.5365/wpsar.2013.4.1.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Dixit R, Khandaker G, Ilgoutz S, et al. Emergence of oseltamivir resistance: control and management of influenza before, during and after the pandemic. Infect Disord Drug Targets. 2013;13:34–45. doi: 10.2174/18715265112129990006. [DOI] [PubMed] [Google Scholar]
  • 38.Terrier O, Moules V, Carron C, et al. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses. Virology. 2012;432:204–18. doi: 10.1016/j.virol.2012.05.019. [DOI] [PubMed] [Google Scholar]
  • 39.Terrier O, Carron C, Cartet G, et al. Ultrastructural fingerprints of avian influenza A(H7N9) virus in infected human lung cells. Virology. 2014;456:39–42. doi: 10.1016/j.virol.2014.03.013. [DOI] [PubMed] [Google Scholar]
  • 40.Ehrhardt C, Seyer R, Hrincius ER, et al. Interplay between influenza A virus and the innate immune signaling. Microbes Infect. 2010;12:81–7. doi: 10.1016/j.micinf.2009.09.007. [DOI] [PubMed] [Google Scholar]
  • 41.Planz O. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res. 2013;98:457–68. doi: 10.1016/j.antiviral.2013.04.008. [DOI] [PubMed] [Google Scholar]
  • 42.Zhang H, Hale BG, Xu K, et al. Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. Viruses. 2013;5:1431–46. doi: 10.3390/v5061431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Cameron CM, Cameron MJ, Bermejo-Martin JF, et al. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. J Virol. 2008;82:11308–17. doi: 10.1128/JVI.00691-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Kash JC, Basler CF, Garcia-Sastre A, et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol. 2004;78:9499–511. doi: 10.1128/JVI.78.17.9499-9511.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Carninci P, Yasuda J, Hayashizaki Y. Multifaceted mammalian transcriptome. Curr Opin Cell Biol. 2008;20:274–80. doi: 10.1016/j.ceb.2008.03.008. [DOI] [PubMed] [Google Scholar]
  • 46.Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet. 2009;10:833–44. doi: 10.1038/nrg2683. [DOI] [PubMed] [Google Scholar]
  • 47.Katagiri F, Glazebrook J (2009) Overview of mRNA expression profiling using DNA microarrays. FM Ausubel, et al (eds) Current protocols in molecular biology, chapter 22, unit 22–24 [DOI] [PubMed]
  • 48.Nau GJ, Richmond JF, Schlesinger A, et al. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA. 2002;99:1503–08. doi: 10.1073/pnas.022649799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Feezor RJ, Oberholzer C, Baker HV, et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infect Immunity. 2003;71:5803–13. doi: 10.1128/IAI.71.10.5803-5813.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26. doi: 10.1056/NEJMoa063994. [DOI] [PubMed] [Google Scholar]
  • 51.Kash JC. Applications of high-throughput genomics to antiviral research: evasion of antiviral responses and activation of inflammation during fulminant RNA virus infection. Antiviral Res. 2009;83:10–20. doi: 10.1016/j.antiviral.2009.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Reeves JD, Piefer AJ. Emerging drug targets for antiretroviral therapy. Drugs. 2005;65:1747–66. doi: 10.2165/00003495-200565130-00002. [DOI] [PubMed] [Google Scholar]
  • 53.Angus D v d, Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51. doi: 10.1056/NEJMra1208623. [DOI] [PubMed] [Google Scholar]
  • 54.Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614. doi: 10.1016/S1473-3099(15)70112-X. [DOI] [PubMed] [Google Scholar]
  • 55.Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30. doi: 10.1038/nrd892. [DOI] [PubMed] [Google Scholar]
  • 56.Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Translat Med. 2011;3:96. doi: 10.1126/scitranslmed.3001318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Josset L, Textoris J, Loriod B, et al. Gene expression signature-based screening identifies new broadly effective influenza a antivirals. PloS One. 2010;5:e13169. doi: 10.1371/journal.pone.0013169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Terrier O, Josset L, Textoris J, et al. Cellular transcriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway. Virol J. 2011;8:285. doi: 10.1186/1743-422X-8-285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Terrier O, Textoris J, Carron C, et al. Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. J Gen Virol. 2013;94:985–95. doi: 10.1099/vir.0.049528-0. [DOI] [PubMed] [Google Scholar]
  • 60.Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007;7:54–60. doi: 10.1038/nrc2044. [DOI] [PubMed] [Google Scholar]
  • 61.Gilbert BE, McLeay MT. MegaRibavirin aerosol for the treatment of influenza A virus infections in mice. Antiviral Res. 2008;78:223–9. doi: 10.1016/j.antiviral.2008.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.McClellan KJ, Wiseman LR, Wilde MI. Midodrine. A review of its therapeutic use in the management of orthostatic hypotension. Drugs Aging. 1998;12:76–86. doi: 10.2165/00002512-199812010-00007. [DOI] [PubMed] [Google Scholar]

Articles from Reanimation are provided here courtesy of Nature Publishing Group

RESOURCES