Skip to main content
Chinese Journal of Lung Cancer logoLink to Chinese Journal of Lung Cancer
. 2020 Mar 20;23(3):176–181. [Article in Chinese] doi: 10.3779/j.issn.1009-3419.2020.03.07

CDK4/6抑制剂在非小细胞肺癌治疗中的研究进展

Research Progress of CDK4/6 Inhibitors in Non-small Cell Lung Cancer

秦 琼 1, 任 尧尧 1, 钟 殿胜 1,*
PMCID: PMC7118338  PMID: 32102134

Abstract

肺癌是全球癌症相关死亡的首要原因,非小细胞肺癌(non-small cell lung cancer, NSCLC)占肺癌的80%-85%。恶性肿瘤可以无限增殖,细胞周期失调控是恶性肿瘤特征之一。细胞周期依赖激酶(cyclin D-dependent kinase, CDK)4/6抑制剂能阻滞肿瘤细胞通过G1期进入S期从而抑制肿瘤增殖,该药物在激素受体阳性乳腺癌中取得了良好的疗效,联合内分泌治疗成为这类患者一线标准治疗。细胞周期失控在NSCLC中比较常见,发生率约为22%-45%,CDK4/6抑制剂也进行了一系列的探索研究,并取得一定的效果,将来有可能成为新的治疗手段。本文重点讨论CDK4/6抑制剂在NSCLC的研究进展,包括作用机制、获批药物、在NSCLC中的临床研究进展、疗效预测生物标记物及局限性等。

Keywords: 肺肿瘤, 细胞周期蛋白D, CDK4/6抑制剂, 生物标记物


肺癌是严重威胁人类健康的疾病,无论在中国还是全世界,其均为发病率、死亡率位居第一的恶性肿瘤[1, 2]。其中非小细胞肺癌(non-small cell lung cancer, NSCLC)占80%-85%,并且很大一部分患者发现时已经为晚期,失去手术根治的机会。近年来,靶向驱动基因表皮生长因子受体(epidermal growth factor receptor, EGFR)、间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)的靶向治疗取得了非常好的效果[3, 4],与化疗相比,明显延长了无进展生存期(progression-free survival, PFS)和总生存期(overall survival, OS),但是,靶向治疗不可避免地会产生耐药;以PD-1和PD-L1为代表的免疫治疗[5]取得了长足进步,但是,整体获益人群有限,需要积极寻找新的治疗靶点。

细胞周期通路的调控异常在NSCLC中非常常见[6-8],有22%-25%患者存在细胞周期蛋白D1-3(cyclin D1-3)和细胞周期依赖激酶(cyclin D-dependence kinase, CDK)4/6扩增、点突变等,导致细胞增殖能力过度活化;6%-45%的患者有CDK抑制因子(CKIs,又称INK4家族)CDKN2A(p16INK4a)、CDKN2B(p15INK4b)、CDKN2C(p18INK4c)和CDKN2D(p19INK4d)的缺失、点突变和多重改变[8, 9],导致抑制细胞增殖能力减弱,为CDK4/6抑制剂的治疗提供理论依据。临床上,CDK4/6抑制剂单用或联合来曲唑、氟维司群等内分泌治疗药物在雌激素受体(estrogen receptor, ER)阳性的晚期乳腺癌治疗中取得了非常好的疗效,明显延长了患者PFS和OS[10, 11]。在NSCLC中,CDK4/6抑制剂也进行了大量探索性研究,主要集中在作用机制、单药、联合其他药物以及优势人群的选择等方面,现综述如下。

1. CDK4/6抑制剂作用机制及目前获批药物

多种细胞外信号通过CDK4/6桥梁作用来影响细胞周期进程[12]。在正常细胞中,促进生长的信号,通过包括有丝分裂原受体、RAS、RAF、MAPK、Fun、Jun通路和PI3K、PIP3、AKT/PKB、β-Catinin等多种通路激活Cyclin D,进一步和CDK4/6结合启动视网膜母细胞瘤蛋白(retinoblastoma protein, Rb)初始磷酸化,进而激活CyclinE-CDK2促使Rb高度磷酸化形成正反馈,使Rb和转录因子E2F分离,促使细胞通过R点,进入细胞增殖分裂期[13]。正常情况下,Cyclin D-CDK4/6复合物和P16(CDKN2A)、P15(CDKN2B)结合,抑制CyclinD-CDK4/6对Rb的初始磷酸化,发挥抑制细胞增殖的作用[12, 14]

在肿瘤细胞中,由于Cyclin D1过表达、INK4(CDKN2A、CDKN2B等)失活、CDK4/6基因突变等细胞增殖环路失去正常调控,CDK4/6抑制剂可以和CDK4/6结合抑制Cyclin D-CDK4/6功能,阻滞肿瘤细胞通过R点,发挥抗肿瘤的机制[14]。尽管Rb是CDK4/6在细胞周期调控中的主要靶标,但CDK4/6抑制剂同时也影响细胞分化、凋亡激活、线粒体活性、调节免疫、促进衰老以及细胞代谢等许多非Rb靶点功能[15-17]。然而,在机体内CDK4/6抑制剂究竟如何发挥抗肿瘤作用,仍不是非常清楚,因此,没有找到准确预测其疗效的生物标记物。

目前,在世界范围内批准上市的CDK4/6抑制剂主要有3种:哌柏西利(Palbociclib)、瑞柏西利(Ribociclib)和安博西利(Abemaciclib)。哌柏西利在2016年最早批准上市,在结构式上,瑞柏西利和哌柏西利非常类似。体外研究显示安博西利和瑞柏西利对CDK4的抑制作用要强于CDK6,而哌柏西利对于CDK4和CDK6的抑制作用类似[18]。3种药物均为口服,哌柏西利和瑞柏西利半衰期分别为28 h和30 h-50 h,用法分别为每日125 mg和600 mg,口服1次,连用3周,停用1周,主要剂量限制性毒性为中性粒细胞减少;安博西利半衰期为21 h,每次200 mg,每日两次,持续口服,主要剂量限制性毒性为消化道反应[19]

2. CDK4/6抑制剂在NSCLC中的临床研究进展

2.1. CDK4/6抑制剂单药治疗

2.1.1. 哌柏西利(Palbociclib)

哌柏西利在NSCLC中的研究多为Ⅰ期/Ⅱ期研究。在晚期肺鳞癌Lung-MAP(SWOG S1400)试验中一组队列为哌柏西利对比多西他赛,这些患者均为CDK4/6突变或Cyclin D扩增;2018年美国临床肿瘤学协会(American Society of Clinical Oncology, ASCO)年会公布结果:32例患者接受哌柏西利治疗,有2例患者部分缓解(partial response, PR)(均为Cyclin D扩增)、12例患者疾病稳定(stable disease, SD),客观有效率(objective response rate, ORR)为6.3%,疾病控制率为44.0%[20]。另外一项哌柏西利Ⅱ期研究[21]纳入患者为肿瘤组织免疫组化p16缺失、一线治疗失败后的患者,在19例接受哌柏西利治疗的患者中,16例进行疗效评估,SD患者8例,疾病控制率为50.0%,客观有效率为0.0%,中位PFS为3.2个月(95%CI:2.1个月-6.0个月),中位OS为7.7个月(95%CI:4.0个月-13.5个月);在SD患者中,中位PFS长达6.1个月,中位OS长达16.5个月,均较疾病进展患者中位PFS(2.2个月)和中位OS(4.2个月)明显延长(P < 0.001和P=0.003)。该研究提示,在CDK4/6抑制剂临床终点选择上,PFS、OS终点优于ORR的终点。

2.1.2. 安博西利(Abemeciclib)

安博西利在晚期NSCLC中也进行了一系列研究[22-25]。在Ⅰ期针对晚期NSCLC的研究中[22],纳入患者均为常规治疗失败的NSCLC,既往接受1线-10线治疗,中位接受治疗线数为4线;入组68例患者中,疾病控制率为49%(33/68),6个月PFS率为26%,4例患者PFS超过12个月;2例患者达到PR,ORR为2.9%。进一步分析2例PR的患者,1例患者为Kras突变,1例为CDKN2A拷贝数缺失的肺鳞癌患者。亚组分析,Kras突变29例患者,疾病控制率为55%(16/29),高于K-ras野生型患者的39%(13/33);在SD时间超过24周的患者中,Kras突变患者也明显高于Kras野生型患者(31% vs 12%);Kras突变型患者中位PFS较Kras野生型患者延长(2.8个月vs 1.9个月)。

基于Ⅰ期研究在NSCLC中良好的效果,安博西利开展JUNIPER研究[6, 23, 25, 26]。该研究纳入患者为Kras突变患者,随机按3:2分组,安博西利+最佳支持治疗对比厄洛替尼+最佳支持治疗,在既往接受过多线治疗的Ⅳ期NSCLC患者中进行。患者被随机分为安博西利200 mg q12h组或厄洛替尼150 mg qd组。共入组453例患者,其中安博西利组270例,厄洛替尼组183例,主要研究终点为OS,次要研究终点为PFS和ORR。结果显示:与厄洛替尼组相比,安博西利组中位PFS明显延长(3.6个月vs 1.9个月,P < 0.001)、ORR(8.9% vs 2.7%, P=0.01)和疾病控制率(54.4% vs 31.7%)均明显提高;但两组间OS并无显著差异(7.4个月vs 7.8个月,P=0.771),该研究没有达到主要临床终点,宣告失败。

另外一项Ⅱ期随机研究[24]入组为一线铂类为基础化疗失败的晚期肺鳞癌,比较安博西利和多西他赛的疗效。入组159例,按2:1随机分配,安博西利组106例,多西他赛组53例。两组患者中位PFS分别为2.5个月和4.2个月(HR=1.77, 95%CI: 1.17-2.67, P=0.006, 8),中位OS分别为7.0个月和12.4个月(HR=1.33, 95%CI: 0.88-2.02, P=0.174, 6);疾病控制率分别为50.9%和64.2%,ORR分别为2.8%和20.8%。因此,和多西他赛相比,单药安博西利没有改善晚期肺鳞癌患者的二线治疗生存[24]

综上所述,单药CDK4/6抑制剂尽管在晚期NSCLC中有一定的疗效,但是整体疗效较差,需要探索更好的治疗策略。

2.2. CDK4/6抑制剂联合其他药物

2.2.1. CDK4/6抑制剂联合MEK抑制剂

早期研究结果表明,ras突变可以激活Cyclin D,促进细胞增殖,并且在结直肠癌和胰腺癌临床前研究模型中,证实CDK4/6抑制剂和MEK抑制剂具有协同增效作用,因此,该策略也在肺癌治疗中引起极大的兴趣[27, 28]。在Kras突变的肺癌细胞系中,MEK抑制剂曲美替尼(Tremetinib)联合哌柏西利可以明显降低细胞存活率;在对MEK抑制剂耐药细胞中,部分是因为P16突变导致,联合CDK4/6抑制剂能增加细胞敏感性[29]。目前正在开展一项MEK抑制剂比美替尼(Binimetinib)联合哌柏西利在Kras突变NSCLC的Ⅰ期/Ⅱ期研究(NCT03170206)。

2.2.2. CDK4/6抑制剂联合PI3KCA抑制剂治疗PI3KCA突变肺鳞癌

在肺鳞癌中,PI3K通路异常是非常重要的一种亚型,通常表现为PIK3CA突变、扩增和PTEN缺失,在肺鳞癌中其发生率分别为10%-15%、50%和20%-30%[25]。PI3K是CDK4/6的上游活化信号,通过Cyclin D的活化发挥作用[30]。临床前肺鳞癌患者人源肿瘤异种移植(patient-derived tumor xenograft, PDX)模型显示,在PI3KCA突变的模型中,CDKN2A纯合性缺失和杂合性缺失比例非常高,单用PI3K抑制剂BKM1220或者BYL719在动物体内有效率为33%,主要是针对PI3K突变患者。联合PI3K抑制剂和安博西利,在PI3K突变肺鳞癌动物模型中,较单药PI3K抑制剂更有效[31]。CDK4/6抑制剂(哌柏西利或安博西利)联合PI3K抑制剂,能明显抑制模型中肿瘤细胞的生长,并且耐受良好。在4例裸鼠中,有3例出现不同程度的肿瘤缩小[31]。可能的机制在于PI3K突变通过Akt、mTOR会导致Cyclin D激活,同时P16缺失减弱对CDK4/6抑制作用,联合PI3K和CDK4/6抑制剂可能同时减少Cyclin D1和增加对CDK4/6的抑制,起到协同作用[31]。目前正在开展一项PI3K/mTOR抑制剂(Gedatolisib)联合哌柏西利在晚期实体肿瘤中的临床研究(NCT03065062)。

2.2.3. CDK4/6抑制剂联合mTOR抑制剂

在基础研究中,CDK4/6抑制剂能对多种肺癌细胞系H520、H538、H2347和H125发挥抑制作用,在联合mTOR抑制剂能协同增效并且逆转对CDK4/6抑制剂耐药[21, 32]。其机制可能是:CDK4/6抑制剂可代偿性使Cyclin D1增加,这种增加反馈性影响AKT/mTOR通路,导致磷酸化P70S6K的下调,而mTOR抑制剂能阻断CDK4/6抑制剂治疗后Cyclin D1增加,发挥协同作用[21]

2.2.4. CDK4/6抑制剂联合细胞毒性化疗药物

CDK4/6抑制剂和化疗药物可能有拮抗作用,因此,需要注意用药顺序。在Calu-6细胞系异种移植裸鼠模型研究中发现,CDK4/6抑制剂联合吉西他滨增强抗肿瘤活性,但是没有出现G1细胞周期停滞,可能与核苷还原酶表达的降低有关[33]。目前正在开展一项吉西他滨联合安博西利在晚期NSCLC中的Ⅰ期研究(NCT02079636)。

2.2.5. CDK4/6抑制剂联合PD-1和PD-L1抑制剂

CDK4不但能促进肿瘤细胞增殖,同时也是肿瘤微环境成熟的重要条件,能影响肿瘤细胞抗原呈递和表达[34]。CDK4/6能够促进T细胞PD-1表达,增加T细胞浸润,因此,哌柏西利联合PD-1抑制剂能增强肿瘤退缩,改善人源肿瘤异种移植模型裸鼠的生存时间[35, 36]。目前一项帕博利珠单抗(Pembrolizumab)联合安博西利治疗晚期NSCLC的研究正在进行(NCT02079636)。

综上所述,CDK4/6抑制剂和多种药物联合使用可能协同增效,但是这些研究多数来自临床前数据,需要进一步得到临床验证。

3. CDK4/6抑制剂在NSCLC中疗效预测生物标记物

3.1. Kras突变

Kras突变的肺癌细胞系中,CDK4的敲除会导致肺癌细胞生长明显抑制。同时对于Kras突变细胞在移植裸鼠模型中研究[37]发现,应用CDK4/6抑制剂哌柏西利能明显降低转移率(17% vs 75%),减缓肿瘤生长。在安博西利的NSCLC Ⅰ期临床研究中发现,Kras突变患者疾病控制率明显高于Kras野生型(55% vs 29%),SD > 24周者,Kras突变型优于野生型(31% vs 12%),中位PFS也延长(2.8个月vs 1.9个月)[22]。这些结果提示,Kras突变可能是CDK4/6抑制剂的有效人群,然而,在JUNIPER研究中,Kras突变型患者的ORR仅为8.9%,PFS为2.7个月[25],远较EGFR突变患者应用EGFR-TKI疗效差,因此,Kras突变并不是很好的生物标记物。

3.2. KrasLKB1共突变

在安博西利NSCLC Ⅰ期研究中,进一步分析发现,在4例Kras突变合并有LKB1突变的患者,均取得肿瘤的不同程度缩小,其中2例接近PR[22]。因此,是否对于KrasLKB1共突变的NSCLC患者能获益更多,有待进一步临床验证。

3.3. P16(CDKN2A)缺失(免疫组化阴性)

CDKN2A作为CDK4/6抑制因子,在正常细胞周期中对于控制Cyclin D介导CDK4/6激活起到非常重要作用,而CDKN2A在NSCLC中经常发生缺失,因此,CDKN2A可能是潜在生物标记物。在一项应用CDKN2A阴性作为筛选标志的Ⅱ期晚期NSCLC研究[21]中,CDKN2A阴性患者接受哌柏西利治疗的16例患者中,并没有出现ORR的患者,PFS仅为2.2个月,因此CDKN2A阴性并不是理想的筛选生物标记物。

3.4. Rb表达功能完整

Cyclin D和CDK4/6结合后逐步磷酸化Rb,使其丧失对细胞周期的调控,细胞通过R点,进入增殖。因此,对于Rb存在突变、缺失的患者可能不能从CDK4/6抑制剂治疗中获益。一项基础研究[38]显示:CDK4/6抑制剂能诱导Rb蛋白表达正常的肺癌细胞凋亡,其机制主要通过下调凋亡抑制物(FOXM1和Survivin),同时上调促凋亡因子SMAC和细胞色素C表达,促进肿瘤凋亡发挥抗肿瘤作用;而在Rb缺失突变患者中,CDK4/6抑制剂无促进肿瘤凋亡的功能。因此CDK4/6抑制剂单独应用在Rb突变的患者中可能无效。小细胞肺癌90%患者存在Rb的改变[39],而在NSCLC中90%患者的Rb功能正常[6],因此从信号通路角度提示,CDK4/6抑制剂在肺癌领域的研究主要集中于NSCLC,一旦发生Rb突变可能提示CDK4/6抑制剂无效。

3.5. SMARCA4缺失

SMARCA4基因是抑癌基因,该基因编码的蛋白是Swi/SNF蛋白家族的一员,具有螺旋酶和ATP酶活性,能通过改变基因周围的染色质结构来调节多种基因的转录[39, 40]。既往研究发现,SMARCA突变是卵巢高钙血型小细胞癌(small cell carcinoma of the ovary of hypercalcemic type, SCCOHT)的驱动基因[41],该基因的缺失导致Cyclin D下降引起对CDK4/6抑制剂敏感性增加,CDK4/6抑制剂治疗有效[42]。在NSCLC中SMARCA4突变失活,大约有10%左右,也存在这种机制[43]。在SMARCA4缺失的情况下,SMARCA2影响SWI/SNF的亚基,可以调节Cyclin D和对药物的敏感性。SMARCA4/2缺失一方面通过限制Cyclin D1染色质的可及性,另一方面抑制Cyclin D1关键的转录激活因子c-jun来发挥效果。在NSCLC体外细胞系和小鼠体内证实SMARCA4缺失和CDK4/6抑制剂合成致死作用[43]。在临床患者中发现SMARCA4缺失患者存在Cyclin D表达下降,这类患者可能预后较差,并且,其中20%患者存在Kras突变。因此,SMARCA4突变患者可能是CDK4/6获益的有效指标。

4. 局限性

CDK4/6抑制剂尽管在NSCLC中进行了一系列的研究,主要集中在Ⅰ期、Ⅱ期研究,但是在NSCLC中的整体疗效没有达到预期效果,和激素受体阳性的乳腺癌相比差距较大。未来研究主要集中在CDK4/6抑制剂联合其他药物治疗,希望将来在NSCLC中可以获得比较理想的效果。

综上所述,CDK4/6抑制剂在晚期NSCLC治疗中可能有一席之地。未来,希望有更多基础和临床研究继续探讨CDK4/6抑制剂的精准获益人群,以期获得较好的临床效果;同时,从信号通路、调节肿瘤免疫微环境等多个角度制定联合治疗策略,以期取得最佳疗效。

References

  • 1.Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132. doi: 10.3322/caac.21338. [DOI] [PubMed] [Google Scholar]
  • 2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. [DOI] [PubMed] [Google Scholar]
  • 3.Zhang T, Wan B, Zhao Y, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl Lung Cancer Res. 2019;8(3):302–316. doi: 10.21037/tlcr.2019.04.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Thai AA, Solomon BJ. Treatment of ALK-positive nonsmall cell lung cancer: recent advances. Curr Opin Oncol. 2018;30(2):84–91. doi: 10.1097/CCO.0000000000000431. [DOI] [PubMed] [Google Scholar]
  • 5.Almutairi AR, Alkhatib N, Martin J, et al. Comparative efficacy and safety of immunotherapies targeting the PD-1/PD-L1 pathway for previously treated advanced non-small cell lung cancer: A Bayesian network meta-analysis. Crit Rev Oncol Hematol. 2019;142:16–25. doi: 10.1016/j.critrevonc.2019.07.004. [DOI] [PubMed] [Google Scholar]
  • 6.Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–525. doi: 10.1038/nature11404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–367. doi: 10.1158/2159-8290.CD-15-0894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. doi: 10.1038/nrc.2016.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Vanarsdale T, Boshoff C, Arndt KT, et al. Molecular pathways: targeting the Cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res. 2015;21(13):2905–2910. doi: 10.1158/1078-0432.CCR-14-0816. [DOI] [PubMed] [Google Scholar]
  • 10.Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–1936. doi: 10.1158/1078-0432.CCR-14-0816. [DOI] [PubMed] [Google Scholar]
  • 11.Goetz MP, Toi M, Campone M, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–3646. doi: 10.1200/JCO.2017.75.6155. [DOI] [PubMed] [Google Scholar]
  • 12.Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–1512. doi: 10.1101/gad.13.12.1501. [DOI] [PubMed] [Google Scholar]
  • 13.Harbour JW, Luo RX, Dei SA, et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–869. doi: 10.1016/s0092-8674(00)81519-6. [DOI] [PubMed] [Google Scholar]
  • 14.Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2(12):910–917. doi: 10.1038/nrc950. [DOI] [PubMed] [Google Scholar]
  • 15.Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle. 2015;14(12):1786–1798. doi: 10.1080/15384101.2014.998085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–3093. doi: 10.1242/dev.091744. [DOI] [PubMed] [Google Scholar]
  • 17.Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 2016;17(5):280–292. doi: 10.1038/nrm.2016.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin Cancer Res. 2017;23(13):3251–3262. doi: 10.1158/1078-0432.CCR-16-3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Klein ME, Kovatcheva M, Davis LE, et al. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell. 2018;34(1):9–20. doi: 10.1016/j.ccell.2018.03.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lam VK, Papadimitrakopoulou V. Master protocols in lung cancer: experience from lung master protocol. Curr Opin Oncol. 2018;30(2):92–97. doi: 10.1097/CCO.0000000000000433. [DOI] [PubMed] [Google Scholar]
  • 21.Gopalan PK, Villegas AG, Cao C, et al. CDK4/6 inhibition stabilizes disease in patients with p16-null non-small cell lung cancer and is synergistic with mTOR inhibition. Oncotarget. 2018;9(100):37352–37366. doi: 10.18632/oncotarget.26424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Patnaik A, Rosen LS, Tolaney SM, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–753. doi: 10.1158/2159-8290.CD-16-0095. [DOI] [PubMed] [Google Scholar]
  • 23.Goldman JW, Shi P, Reck M, et al. Treatment rationale and study design for the JUNIPER study: a randomized phase Ⅲ study of abemaciclib with best supportive care versus erlotinib with best supportive care in patients with stage Ⅳ non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy. Clin Lung Cancer. 2016;17(1):80–84. doi: 10.1016/j.cllc.2015.08.003. [DOI] [PubMed] [Google Scholar]
  • 24.Scagliotti GV. A randomized phase 2 study of abemaciclib versus docetaxel in patients with stage Ⅳ squamous non-small cell lung cancer (sqNSCLC) previously treated with platinum-based chemotherapy. Chicago: 2018473.
  • 25.Hew GA. A randomized phase 3 study of abemaciclib versus erlotinib in previously treated patients with stage Ⅳ NSCLC withKRAS mutation: JUNIPER. J Clin Cancer. 2018;36(15s):466s. [Google Scholar]
  • 26.Jonathan W, Goldman PSMR, Andrew Koustenis KCH. A study of abemaciclib (LY2835219) in participants with previously treatedKRAS mutated lung cancer (JUNIPER).
  • 27.Franco J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget. 2014;5(15):6512–6525. doi: 10.18632/oncotarget.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lee MS, Helms TL, Feng N, et al. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo inKRAS mutant colorectal cancer models. Oncotarget. 2016;7(26):39595–39608. doi: 10.18632/oncotarget.9153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Tao Z, Le Blanc JM, Wang C, et al. Coadministration of trametinib and palbociclib radiosensitizesKRAS-mutant non-small cell lung cancers in vitro and in vivo. Clin Cancer Res. 2016;22(1):122–133. doi: 10.1158/1078-0432.CCR-15-0589. [DOI] [PubMed] [Google Scholar]
  • 30.Averous J, Fonseca BD, Proud CG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene. 2008;27(8):1106–1113. doi: 10.1038/sj.onc.1210715. [DOI] [PubMed] [Google Scholar]
  • 31.Shi R, Li M, Raghavan V, et al. Targeting the CDK4/6-Rb pathway enhances response to PI3K inhibition in PIK3CA-mutant lung squamous cell carcinoma. Clin Cancer Res. 2018;24(23):5990–6000. doi: 10.1158/1078-0432.CCR-18-0717. [DOI] [PubMed] [Google Scholar]
  • 32.Haines E, Chen T, Kommajosyula N, et al. Palbociclib resistance confers dependence on an FGFR-MAP kinase-mTOR-driven pathway in KRAS-mutant non-small cell lung cancer. Oncotarget. 2018;9(60):31572–31589. doi: 10.18632/oncotarget.25803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gelbert LM, Cai S, Lin X, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32(5):825–837. doi: 10.1007/s10637-014-0120-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Goel S, Decristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–475. doi: 10.1038/nature23465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553(7686):91–95. doi: 10.1038/nature25015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Deng J, Wang ES, Jenkins RW, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216–233. doi: 10.1158/2159-8290.CD-17-0915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Puyol M, Martin A, Dubus P, et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell. 2010;18(1):63–73. doi: 10.1016/j.ccr.2010.05.025. [DOI] [PubMed] [Google Scholar]
  • 38.Thangavel C, Boopathi E, Liu Y, et al. Therapeutic challenge with a CDK 4/6 inhibitor induces an RB-dependent SMAC-mediated apoptotic response in non-small cell lung cancer. Clin Cancer Res. 2018;24(6):1402–1414. doi: 10.1158/1078-0432.CCR-17-2074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524(7563):47–53. doi: 10.1038/nature14664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Coordinator EA, Campbell JC, Data CS, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–550. doi: 10.1038/nature13385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Jelinic P, Schlappe BA, Conlon N, et al. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type. Mod Pathol. 2016;29(1):60–66. doi: 10.1038/modpathol.2015.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Xue Y, Meehan B, Macdonald E, et al. CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nat Commun. 2019;10(1):558. doi: 10.1038/s41467-018-06958-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Xue Y, Meehan B, Fu Z, et al. SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nat Commun. 2019;10(1):557. doi: 10.1038/s41467-019-08380-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Lung Cancer are provided here courtesy of Editorial office of Chinese Journal of Lung Cancer

RESOURCES