The most distinctive comorbidities of 32 non-survivors from a group of 52 intensive care unit patients with novel coronavirus disease 2019 (COVID-19) in the study by Xiaobo Yang and colleagues1 were cerebrovascular diseases (22%) and diabetes (22%). Another study2 included 1099 patients with confirmed COVID-19, of whom 173 had severe disease with comorbidities of hypertension (23·7%), diabetes mellitus (16·2%), coronary heart diseases (5·8%), and cerebrovascular disease (2·3%). In a third study,3 of 140 patients who were admitted to hospital with COVID-19, 30% had hypertension and 12% had diabetes. Notably, the most frequent comorbidities reported in these three studies of patients with COVID-19 are often treated with angiotensin-converting enzyme (ACE) inhibitors; however, treatment was not assessed in either study.
Human pathogenic coronaviruses (severe acute respiratory syndrome coronavirus [SARS-CoV] and SARS-CoV-2) bind to their target cells through angiotensin-converting enzyme 2 (ACE2), which is expressed by epithelial cells of the lung, intestine, kidney, and blood vessels.4 The expression of ACE2 is substantially increased in patients with type 1 or type 2 diabetes, who are treated with ACE inhibitors and angiotensin II type-I receptor blockers (ARBs). Hypertension is also treated with ACE inhibitors and ARBs, which results in an upregulation of ACE2.5 ACE2 can also be increased by thiazolidinediones and ibuprofen. These data suggest that ACE2 expression is increased in diabetes and treatment with ACE inhibitors and ARBs increases ACE2 expression. Consequently, the increased expression of ACE2 would facilitate infection with COVID-19. We therefore hypothesise that diabetes and hypertension treatment with ACE2-stimulating drugs increases the risk of developing severe and fatal COVID-19.
If this hypothesis were to be confirmed, it could lead to a conflict regarding treatment because ACE2 reduces inflammation and has been suggested as a potential new therapy for inflammatory lung diseases, cancer, diabetes, and hypertension. A further aspect that should be investigated is the genetic predisposition for an increased risk of SARS-CoV-2 infection, which might be due to ACE2 polymorphisms that have been linked to diabetes mellitus, cerebral stroke, and hypertension, specifically in Asian populations. Summarising this information, the sensitivity of an individual might result from a combination of both therapy and ACE2 polymorphism.
We suggest that patients with cardiac diseases, hypertension, or diabetes, who are treated with ACE2-increasing drugs, are at higher risk for severe COVID-19 infection and, therefore, should be monitored for ACE2-modulating medications, such as ACE inhibitors or ARBs. Based on a PubMed search on Feb 28, 2020, we did not find any evidence to suggest that antihypertensive calcium channel blockers increased ACE2 expression or activity, therefore these could be a suitable alternative treatment in these patients.
This online publication has been corrected. The corrected version first appeared at thelancet.com/respiratory on May 18, 2020
Acknowledgments
We declare no competing interests.
References
- 1.Yang X, Yu Y, Xu J. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30079-5. published online Feb 24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Guan W, Ni Z, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 doi: 10.1056/NEJMoa2002032. published online Feb 28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Zhang JJ, Dong X, Cao YY. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy. 2020 doi: 10.1111/all.14238. published online Feb 19. [DOI] [PubMed] [Google Scholar]
- 4.Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virology. 2020 doi: 10.1128/JVI.00127-20. published online Jan 29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38. doi: 10.1016/j.phrs.2017.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]