Abstract
Bovine-murine heteromyeloma cell lines were prepared by fusing lymphoid cells from a bovine leukemia virus (BLV)-infected cow with mouse myeloma cells. Selection of hybrid cell colonies was based on the ratio of bovine and murine chromosomes, the presence of cell-surface immunoglobulins and growth characteristics. First-generation fusion partners were compared for fusion efficiency and the number of antigen-specific antibody-producing clones generated. Hybrid cell colonies that initially secreted antibodies were selected from first-generation heteromyelomas to function as second-generation fusion partners. Although fusion efficiencies for both generations did not differ, the second-generation heteromyelomas yielded a higher number of specific antibody-producing clones. Fusion of heteromyelomas with either lymph node cells or splenocytes indicated that fusion with lymph node cells results in a higher number of specific antibody-producing clones, whereas fusion efficiency was found to be higher with splenocytes. The optimal time intervals between the final booster injection and fusion were found to be 4 days for splenocytes and 7 days for lymph node cells. Finally, the characterization of bovine monoclonal antibodies against bovine rotavirus and pregnant mare serum gonadotrophin and their neutralizing capacities in vitro are described.
References
- Arriëns M.A., Booman P. Research Institute for Animal Production; Zeist: 1989. The effect of repeated injections of murine monoclonal antibodies against progesterone on immune response and plasma progesterone neutralizing efficacy in cyclic pigs. (Report B-312). [Google Scholar]
- Beh K.J., Haynes S.E., Ward K.A. Characterization of two mouse myeloma×sheep lymphocyte cell lines secreting sheep antibody. Mol. Immunol. 1986;23:717–724. doi: 10.1016/0161-5890(86)90082-9. [DOI] [PubMed] [Google Scholar]
- Booman P. Application of monoclonal antibodies in animal production: a review. Livest. Prod. Sci. 1988;18:199–215. doi: 10.1016/0301-6226(88)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booman P., Tieman M., Van de Wiel D.F.M., Schakenraad J.M., Koops W. Application of monoclonal antibodies in animal production: pregnancy diagnosis in cattle. In: Houwink E.H., van der Meer R.R., editors. Innovations in Biotechnology. Elsevier; Amsterdam: 1984. pp. 259–266. [Google Scholar]
- Booman P., Wissink H.C.G., De Bruijn M., Veerhuis R., Hengst A.M. A comparative study on the use of bovine and murine monoclonal antibodies for passive immunization in cattle. Vet. Immunol. Immunopathol. 1990 doi: 10.1016/0165-2427(92)90169-q. submitted. [DOI] [PubMed] [Google Scholar]
- Castrucci G., Ferrari M., Frigeri F., Cilli V., Caleffi F., Aldrovandi V., Rampichini L., Tangucci F. Experimental infection and cross protection tests in calves with cytopathic strains of bovine rotavirus. Comp. Immun. Microbiol. Infect. Dis. 1983;6:321–332. doi: 10.1016/0147-9571(83)90025-5. [DOI] [PubMed] [Google Scholar]
- Cole S.P.C., Kozbor D., Roder J.C.C. Strategies for production of human monoclonal antibodies. In: Springer T.A., editor. Hybridoma Technology in the Biosciences and Medicine. Plenum Press; New York, NY: 1985. pp. 43–55. [Google Scholar]
- De Boer G.F., Boerrigter H.M., Groen J., Osterhaus A.D.M.E. Identification of bovine leukemia virus (BLV) infected cattle by complex-trapping-blocking (CTB) ELISA employing monoclonal antibodies directed against BLV-p24. J. Vet. Med. 1987;B 34:717–728. doi: 10.1111/j.1439-0450.1987.tb00453.x. [DOI] [PubMed] [Google Scholar]
- Groves D.J., Morris B.A., Clayton J. Preparation of a bovine monoclonal antibody to testosterone by interspecies fusion. Res. Vet. Sci. 1987;43:253–256. [PubMed] [Google Scholar]
- Groves D.J., Morris B.A., Tan K., DeSilva M., Clayton J. Production of an ovine monoclonal antibody to testosterone by an interspecies fusion. Hybridoma. 1987;6:71–76. doi: 10.1089/hyb.1987.6.71. [DOI] [PubMed] [Google Scholar]
- Groves D.J., Clayton J., Morris B.A. A bovine monoclonal antibody to oestrone/oestradiol prepared by a (murine×bovine)×bovine interspecies fusion. Vet. Immunol. Immunopathol. 1988;18:95–101. doi: 10.1016/0165-2427(88)90039-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hageltorn M., Gustavsson I. Giemsa staining patterns for identification of the pig mitotic chromosomes. Hereditas. 1973;75:144–146. doi: 10.1111/j.1601-5223.1973.tb01153.x. [DOI] [PubMed] [Google Scholar]
- Jahn S., Grunow R., Kiessig S.T., Specht U., Matthes H., Hiepe F., Hlinak A., Von Baehr R. Establishment of human Ig producing heterohybridomas by fusion of mouse myeloma cells with human lymphocytes derived from peripheral blood, bone marrow, spleen, lymph node, and synovial fluid. Effect of polyclonal prestimulation and cryopreservation. J. Immunol. Methods. 1988;107:59–66. doi: 10.1016/0022-1759(88)90009-9. [DOI] [PubMed] [Google Scholar]
- James K., Bell G.T. Human monoclonal antibody production. Current status and future prospects. J. Immunol. Methods. 1987;100:5–40. doi: 10.1016/0022-1759(87)90170-0. [DOI] [PubMed] [Google Scholar]
- Kearney J.F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J. Immunol. 1979;123:1548–1550. [PubMed] [Google Scholar]
- Kozbor D., Croce C.M. Fusion partners for production of human monoclonal antibodies. In: Engleman E.G., Foung S.K.H., Larrick J., Raubitschek A., editors. Human Hybridomas and Monoclonal Antibodies. Plenum Press; New York, NY: 1985. pp. 21–36. [Google Scholar]
- Lin C.C., Newton D.R., Church R.B. Identification and nomenclature for G-banded bovine chromosomes. Can. J. Genet. Cytol. 1977;19:271–282. [Google Scholar]
- Mirza I.H., Wilkin T.J., Cantarini M., Moore K. A comparison of spleen and lymph node cells as fusion partners for the raising of monoclonal antibodies after different routes of immunisation. J. Immunol. Methods. 1987;105:235–243. doi: 10.1016/0022-1759(87)90271-7. [DOI] [PubMed] [Google Scholar]
- Murphy S.M., Webb G.C., Earle M.E., Russ G.R., Churcher H., Tait B.D., d'Apice A.J.F. Vol. 18. 1986. Human monoclonal antibody production by xenohybridomas; pp. 343–346. (Transplant. Proc.). [PubMed] [Google Scholar]
- Nose M., Wigzell H. Vol. 80. 1983. Biological significance of carbohydrate chains on monoclonal antibodies; pp. 6632–6636. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raison R.L., Walker K.Z., Halnan C.R.E., Brisooe D., Basten A. Loss of secretion in mouse-human hybrids need not be due to the loss of a structural gene. J. Exp. Med. 1982;156:1380–1389. doi: 10.1084/jem.156.5.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raybould T.J.G., Crouch C.F., McDougall L.J., Watts T.C. Bovine-murine hybridoma that secretes bovine monoclonal antibody of defined specificity. Am. J. Vet. Res. 1985;46:426–427. [PubMed] [Google Scholar]
- Ressang A.A., Mastenbroek N., Quak J., Van Griensven L.J.L.D., Calafat J., Hilgers J., Hageman P.C., Souissi T., Swen S. Studies on bovine leukemia, I. Establishment of type C virus producing cell lines. Zentralbl. Vet. Med. 1974;B 21:602–627. [PubMed] [Google Scholar]
- Srikumaran S., Guidry A.J., Goldsby R.A. Production and characterization of monoclonal bovine immunoglobulins G1, G2 and M from bovine×murine hybridomas. Vet. Immunol. Immunopathol. 1984;5:323–342. doi: 10.1016/0165-2427(84)90002-3. [DOI] [PubMed] [Google Scholar]
- Teng N.N.H., Reyes G.R., Bieber M., Fry K.E., Lam K.S., Hebert J.M. Strategies for stable human monoclonal antibody production: construction of heteromyelomas, in vitro sensitization, and molecular cloning of human immunoglobulin genes. In: Engleman E.G., Foung S.K.H., Larrick J., Raubitschek A., editors. Human Hybridomas and Monoclonal Antibodies. Plenum Press; New York, NY: 1985. pp. 71–91. [Google Scholar]
- Thiriart Cl., Collignon C., Sneyers M., Lambert A.F., Franssen J.D., Schwers A., Bruyns C., Urbain J., Pastoret P.P. Génération d'anticorps monoclonaux neutralisant le rotavirus bovin pour des essais thérapeutiques chez le veau nouveau-né infecté expérimentalement. Ann. Méd. Vét. 1987;131:275–286. [Google Scholar]
- Tucker E.M., Dain A.R., Clarke S.W., Donker R.A. Specific bovine monoclonal antibody produced by a re-fused mouse/calf hybridoma. Hybridoma. 1984;3:171–176. doi: 10.1089/hyb.1984.3.171. [DOI] [PubMed] [Google Scholar]
- Tucker E.M., Clarke S.W., Méténier L. Murine/bovine hybridomas producing monoclonal alloantibodies to bovine red cell antigens. Anim. Genet. 1987;18:29–39. doi: 10.1111/j.1365-2052.1987.tb00741.x. [DOI] [PubMed] [Google Scholar]
- Van Zaane D., IJzerman J. Monoclonal antibodies against bovine immunoglobulins and their use in isotype-specific ELISAs for rotavirus antibody. J. Immunol. Methods. 1984;72:427–441. doi: 10.1016/0022-1759(84)90011-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vreeswijk Joh., Folkers E., Wagenaar F., Kapsenberg J.G. The use of colloidal gold immunoelectron microscopy to diagnose Varicella-Zoster virus (VZV) infections by rapid discrimination between VZV, HSV-1 and HSV-2. J. Virol. Methods. 1988;22:255–271. doi: 10.1016/0166-0934(88)90108-5. [DOI] [PubMed] [Google Scholar]
- Wissink H.C.G., Veerhuis R., Booman P. Research Institute for Animal Production; Zeist: 1989. Kinetics of B-cell blastformation in lymphoid tissues of cattle immunized with E. Coli K99 antigen and its significance for bovine monoclonal antibody production; some preliminary results. (Report B-321). [Google Scholar]
- Yarmush M.L., Gates F.T., III, Weisfogel D.R., Kindt T.J. Vol. 77. 1980. Identification and characterization of rabbit-mouse hybridomas secreting rabbit immunoglobulin chains; pp. 2899–2903. (Proc. Natl. Acad. Sci., U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
