Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1998 Jan 5;62(1):33–42. doi: 10.1016/0166-0934(96)02086-1

Determination of affinities of a panel of IgGs and Fabs for whole enveloped (influenza A) virions using surface plasmon resonance

DJ Schofield 1,1, NJ Dimmock 1,
PMCID: PMC7119561  PMID: 8910646

Abstract

The affinity of a panel of neutralizing monoclonal IgGs and their Fab fragments has been measured for the first time with an enveloped type A influenza virus, by surface plasmon resonance (SPR) and the BIAlite instrument. Equilibrium constants could be calculated for four of the five mAbs tested. These were in the nanomolar range. The ranking order was very similar to that obtained with an affinity ELISA, (an equilibrium system) but as others have found, affinities were 2–10-fold lower as measured by SPR (a flow system). No data were obtained with mAb HC58 although it had one of the highest affinities using an ELISA format, and was 28-fold higher than another mAb (HC10) which gave good data by SPR. This may relate to the orientation of its binding on the virion surface. The Kdissoc. of the Fabs was only 3–10-fold higher compared to their IgGs. Fab from the lowest affinity IgG (HC10) could not be measured, possibly because it fell below the threshold for detection.

Keywords: Influenza A virus, IgG, Fab, Affinity, Surface plasmon resonance

References

  1. Barbas C.F., III, Hu D., Dunlop N. Vol. 91. 1994. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain specificity; pp. 3809–3813. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbas C.F., III, Crowe J.E., Cababa D. Vol. 89. 1992. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralizes infectivity; pp. 10164–10168. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blank S.E., Leslie G.A., Clem L.W. Antibody affinity and valence in viral neutralization. J. Immunol. 1972;108:665–673. [PubMed] [Google Scholar]
  4. Brigham-Burke M., Edwards J.R., O'Shannessy D.J. Detection of receptor-ligand interaction using surface plasmon resonance: model studies employing the HIV-1 gp120/CD4 interaction. Anal. Biochem. 1992;205:125–131. doi: 10.1016/0003-2697(92)90588-x. [DOI] [PubMed] [Google Scholar]
  5. Burton D.R., Pyati J., Koduri R. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science. 1994;266:1024–1027. doi: 10.1126/science.7973652. [DOI] [PubMed] [Google Scholar]
  6. Casasnovas J.M., Springer T.A. Kinetics and thermodynamics of virus binding to receptor: Studies with rhinovirus, intracellular adhesion molecule-1 (ICAM-1) and surface plasmon resonance. J. Biol. Chem. 1995;270:13216–13224. doi: 10.1074/jbc.270.22.13216. [DOI] [PubMed] [Google Scholar]
  7. Cavacini L.A., Ernes C.L., Power J., Duval M., Posner M.R. Effect of antibody valency on interaction with cell-surface expressed HIV-1 and viral neutralization. J. Immunol. 1994;152:2538–2545. [PubMed] [Google Scholar]
  8. Conley A.J., Kessler J.A., II, Boots L.J. Vol. 91. 1994. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-42-2F5, an anti-gp41 human monoclonal antibody; pp. 3348–3352. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ditzel H.D., Binley J.M., Moore J.P. Neutralizing recombinant human antibodies to a conformational V2- and CD4 binding site-sensitive epitope of HIV-1 gp120 isolated using an epitope masking procedure. J. Immunol. 1995;154:895–908. [PubMed] [Google Scholar]
  10. Dubs M.C., Altschuh D., Van Regenmortel M.H.V. Mapping of viral epitopes with conformationally specific monoclonal antibodies using biosensor technology. J. Chromatogr. 1992;597:391–396. doi: 10.1016/0021-9673(92)80136-i. [DOI] [PubMed] [Google Scholar]
  11. Dubs M.C., Altschuh D., Van Regenmortel M.H.V. Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol. Letts. 1991;31:59–64. doi: 10.1016/0165-2478(92)90011-c. [DOI] [PubMed] [Google Scholar]
  12. Godet M., Grosclaude J., Delmas B., Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 1994;68:8008–8016. doi: 10.1128/jvi.68.12.8008-8016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffiths A.D., Malmqvist M., Marks J.D. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 1993;12:725–734. doi: 10.1002/j.1460-2075.1993.tb05706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gruen L.C., Kortt A.A., Nice E. Determination of the relative binding affinity of influenza virus N9 sialidases with the Fab fragment of monoclonal antibody NC41 using biosensor technology. Eur. J. Biochem. 1994;217:319–325. doi: 10.1111/j.1432-1033.1993.tb18249.x. [DOI] [PubMed] [Google Scholar]
  15. Hornick C.L., Karush F. Antibody affinity. III The role of multivalence. Immunochem. 1972;9:325–340. doi: 10.1016/0019-2791(72)90096-1. [DOI] [PubMed] [Google Scholar]
  16. Kantrong S.S-H., Briand J.P., Sako N. A single amino acid substitution at N-terminal region of coatprotein of turnip mosaic virus alters antigenicity and aphid transmissibility. Arch. Virol. 1995;140:453–467. doi: 10.1007/BF01718423. [DOI] [PubMed] [Google Scholar]
  17. Kelly D.C., Dimmock N.J. Fowl plague virus replication in mammalian cell-erythocyte heterokaryons: studies concerning the actinomycin D and ultra-violet sensitive phase in influenza virus replication. Virology. 1974;61:210–222. doi: 10.1016/0042-6822(74)90255-4. [DOI] [PubMed] [Google Scholar]
  18. Kovacs G. In: Electromagnetic Surface Modes A. Boardman D., editor. Wiley and Sons; Chichester: 1982. p. 143. [Google Scholar]
  19. Lamarre A., Talbot P.J. Protection from lethal coronavirus infection by immunoglobulin fragments. J. Immunol. 1995;154:3975–3984. [PubMed] [Google Scholar]
  20. Lounsbach G.R., Bourgeois C., West W.H.L. Biological activity, binding site and affinity of monoclonal antibodies to the fusion protein of respiratory syncytial virus. J. Gen. Virol. 1994;74:2559–2565. doi: 10.1099/0022-1317-75-10-2813. [DOI] [PubMed] [Google Scholar]
  21. Lucey D.R., Vancott T.C., Loomis L.D. Measurement of cerebrospinal fluid antibody to the HIV-1 principle neutralizing determinant V3 loop. J. AIDS. 1993;6 [PubMed] [Google Scholar]
  22. Malmborg A.-C., Michaelsson A., Ohlin M., Jansson B., Borrebaeck C.A.K. Real-time analysis of antibody-antigen reaction kinetics. Scand. J. Immunol. 1992;35:643–650. doi: 10.1111/j.1365-3083.1992.tb02970.x. [DOI] [PubMed] [Google Scholar]
  23. Mani J.-C., Marchi V., Cucurou C. Effect of HIV-1 peptide presentation on the affinity constants of two monoclonal antibodies determined by BIAcore technology. Mol. Immunol. 1994;31:439–444. doi: 10.1016/0161-5890(94)90063-9. [DOI] [PubMed] [Google Scholar]
  24. Moore J.P., Cao Y., Quing L. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J. Virol. 1995;69:101–109. doi: 10.1128/jvi.69.1.101-109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neuhoff V., Arold N., Taube D., Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988;9:255–262. doi: 10.1002/elps.1150090603. [DOI] [PubMed] [Google Scholar]
  26. Nisonoff A., Hopper J.E., Spring S.B., editors. The Antibody Molecule. Academic Press; New York: 1975. [Google Scholar]
  27. Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b fron BALB/c mice. J. Immunol. 1983;131:2895–2902. [PubMed] [Google Scholar]
  28. Pellequer J.L., Van Regenmortel M.H.V. Measurement of kinetic binding constants of viral antibodies using new biosensor technology. J. Immunol. Methods. 1993;166:133–143. doi: 10.1016/0022-1759(93)90337-7. [DOI] [PubMed] [Google Scholar]
  29. Porta C., Spall V.E., Loveland J. Development of cowpea mosaic virus as a high yielding system for the presentation of foreign peptides. Virology. 1994;202:949–955. doi: 10.1006/viro.1994.1417. [DOI] [PubMed] [Google Scholar]
  30. Ramsdale T.E., Andrews P.R., Nice E.C. Verification of the intraction between peptide T and CD4 using surface plasmon resonance. FEBS Letts. 1993;333:217–222. doi: 10.1016/0014-5793(93)80657-g. [DOI] [PubMed] [Google Scholar]
  31. Richalet S.E., Cordel P.M., Zeder-Lutz G. Cross-reactivity of monoclonal antibodies to a chimeric V3 peptide of HIV-1 with peptide analogues studied by biosensor technology and ELISA. J. Immunol. Methods. 1994;176:221–234. doi: 10.1016/0022-1759(94)90316-6. [DOI] [PubMed] [Google Scholar]
  32. Roben P., Moore J.P., Sodroski J., Barbas C.F., III, Burton D.R. Recognition of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol. 1994;68:4821–4828. doi: 10.1128/jvi.68.8.4821-4828.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sattentau Q.J., Moore J.P. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med. 1995;182:185–196. doi: 10.1084/jem.182.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schofield D.J., Dimmock N.J. Proc. Natl. Acad. Sci. 1996. Influenza A virus epitopes vary in neutralization efficiency. in press. [Google Scholar]
  35. Sugrue R.J., Bahadur G., Zambon M.C., Hall-Smith M., Douglas A.R., Hay A.J. Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO J. 1990;9:3469–3476. doi: 10.1002/j.1460-2075.1990.tb07555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tarrab E., Berthiaume L., Grothe S., O'Connor-McCourt M., Heppell J., Le Comte J. Evidence of a major neutralizable conformational epitope region on VP2 of infectious pancreatic necrosis virus. J. Gen. Virol. 1995;76:551–558. doi: 10.1099/0022-1317-76-3-551. [DOI] [PubMed] [Google Scholar]
  37. Taylor H.P., Armstrong S.J., Dimmock N.J. Quantitative relationships between an influenza virus and neutralizing antibody. Virology. 1987;159:288–298. doi: 10.1016/0042-6822(87)90466-1. [DOI] [PubMed] [Google Scholar]
  38. Tosser G., Delaunay T., Kohli E., Grosclaude J., Pothier P., Cohen J. Toplogy of bovine rotavirus RF strain VP6 epitopes by real-time biospecific interaction analysis. Virology. 1994;204:8–16. doi: 10.1006/viro.1994.1505. [DOI] [PubMed] [Google Scholar]
  39. VanCott T.C., Bethke F.R., Polonis V.R. Dissociation rate of antibody-gp120 binding interactions is predictive of V3-mediated neutralization of HIV-1. J. Immunol. 1994;153:449–459. [PubMed] [Google Scholar]
  40. VanCott T.C., Loomis L.D., Redfield R.R., Birx D.L. Real-time interaction analysis of antibody reactivity to peptides from the envelope glycoprotein, gp160, of HIV-1. J. Immunol. Methods. 1992;146:163–176. doi: 10.1016/0022-1759(92)90225-i. [DOI] [PubMed] [Google Scholar]
  41. VanCott T.C., Loomis L.D., Redfield R.R., Birx D.L. Real-time interaction analysis of antibody reactivity to peptides from the envelope glycoprotein, gp160, of HIV-1. J. Immunol. Methods. 1992;146:163–176. doi: 10.1016/0022-1759(92)90225-i. [DOI] [PubMed] [Google Scholar]
  42. Welford K. Surface plasmon polaritons and their uses. Opt. Quant. Elect. 1991;23:1–6. [Google Scholar]

Articles from Journal of Virological Methods are provided here courtesy of Elsevier

RESOURCES