Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;36(2):107–122. doi: 10.1016/0165-2427(93)90101-9

Isolation and functional studies on feline bone marrow derived macrophages

Sandra L Daniel a,, Alfred M Legendre b, Robert N Moore a, Barry T Rouse a
PMCID: PMC7119569  PMID: 8475618

Abstract

In this report, we describe an in vitro culture method for feline bone marrow cells, which yields large numbers of quiescent macrophages after 14 days of culture. The bulk of the cultured cell population consists of macrophages as assessed by morphology, macrophage specific cytochemistry, and phagocytosis. The remaining cells were lymphocytes, bone marrow stromal cells, fibroblasts and occasional polymorphonuclear leukocytes. While resting cells produced no detectable interleukin 1, stimulation with lipopolysaccharide (LPS) induced the production of biologically active interleukin 1. After 6 h LPS stimulation, mRNA for tumor necrosis factor α and interleukin 1β was detectable. The absence of mRNA in unstimulated cells indicates cultured macrophages were not activated until stimulated by LPS or plastic adherence. This approach provides a useful means to measure potential modulatory effects by virus infections or other agents upon feline macrophage gene expression.

Abbreviations: BM, bone marrow; FeLV, feline leukemia virus; FIV, feline immunodeficiency virus; HIV, human immunodeficiency virus; IL-1, interleukin 1; LPS, lipopolysaccharide; PHA-P, phytohemagglutinin P; PMN, polymorphonuclear leukocytes; TNF, tumor necrosis factor

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K., Wang-Iverson P., Bonitz S.G., editors. Short Protocols in Molecular Biology. Greene Publishing Associates and Wiley-Interscience; New York: 1989. pp. 335–358. [Google Scholar]
  2. Brunner D., Pedersen N.C. Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus. J. Virol. 1989;63:5483–5488. doi: 10.1128/jvi.63.12.5483-5488.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chirgwin T., Przybyla A.E., MacDonald R.J., Rutter W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979;18:5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Daniel S.L., Brenner C.A., Legendre A.M., Solomon A., Rouse B.T. Feline cytokines TNFα and IL-1β: PCR cloning and sequencing of cDNA. Anim. Biotech. 1992 in press. [Google Scholar]
  5. Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu. Rev. Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
  6. Farrar J.J., Fuller-Farrar J., Simon P.L., Hilfiker M.L., Stadler B.M., Farrar W.L. Thymoma production of T cell growth factor (interleukin 2) J. Immunol. 1980;125:2555–2558. [PubMed] [Google Scholar]
  7. Fourney R.M., Miyakoshi J., Day R.S., III, Paterson M.C. Northern blotting: Efficient RNA staining and transfer. Focus. 1988;10(1):5–7. [Google Scholar]
  8. Gearing A.J.H., Johnstone A.P., Thorpe A. Review article: production and assay of the interleukins. J. Immunol. Methods. 1985;83:1–27. doi: 10.1016/0022-1759(85)90053-5. [DOI] [PubMed] [Google Scholar]
  9. Gillis S., Mizel S.B. Vol. 78. 1981. T-cell lymphoma model for the analysis of interleukin 1-mediated T-cell activation; pp. 1133–1137. (Proc. Natl. Acad. Sci. USA). 2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haas J.G., Baeuerle P.A., Riethmuller G., Ziegler-Heitbrock H.W.L. Vol. 87. 1990. Molecular mechanisms in down regulation of tumor necrosis factor expression; pp. 9563–9567. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haskill S., Johnson C., Eierman D., Becker S., Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J. Immunol. 1988;140(5):1690–1694. [PubMed] [Google Scholar]
  12. Hoover E.A., Rojko J.L., Wilson P.L., Olsen R.G. Determinants of susceptibility and resistance to feline leukemia virus infection. I. Role of macrophages. J. Natl. Cancer Inst. 1981;67(4):889–898. doi: 10.1093/jnci/67.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khandjian E.W. UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol. Biol. Rep. 1986;11:107–115. doi: 10.1007/BF00364822. [DOI] [PubMed] [Google Scholar]
  14. Li C.Y., Lam K.W., Yam L.T. Esterases in human leukocyte. J. Histochem. Cytochem. 1973;21:1–12. doi: 10.1177/21.1.1. [DOI] [PubMed] [Google Scholar]
  15. Meltzer M.S., Skillman D.R., Gomatos P.J., Kalter D.C., Gendelman H.E. Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu. Rev. Immunol. 1990;8:169–194. doi: 10.1146/annurev.iy.08.040190.001125. [DOI] [PubMed] [Google Scholar]
  16. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339:27–30. doi: 10.1038/339027a0. [DOI] [PubMed] [Google Scholar]
  17. Narayan O., Zink M.C. Role of macrophages in lentivirus infections. Adv. Vet. Sci. Comp. Med. 1988;32:129–148. doi: 10.1016/b978-0-12-039232-2.50009-8. [DOI] [PubMed] [Google Scholar]
  18. Stein M., Gordon S. Regulation of tumor necrosis factor (TNF) release by murine peritoneal macrophages: role of cell stimulation and specific phagocytic plasma membrane receptors. Eur. J. Immunol. 1991;21:431–437. doi: 10.1002/eji.1830210227. [DOI] [PubMed] [Google Scholar]
  19. Stoddart C.A., Scott F.W. Isolation and identification of feline peritoneal macrophages for in vitro studies of coronavirus-macrophage interactions. J. Leukocyte Biol. 1988;44:319–328. doi: 10.1002/jlb.44.5.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takasuka N., Tokunaga T., Akagawa K.S. Preexposure of macrophages to low doses of lipopolysaccharide inhibits the expression of tumor necrosis factor alpha mRNA but not IL-1 beta mRNA. J. Immunol. 1991;146(11):3824–3830. [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES