Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Dec 10;48(2):205–211. doi: 10.1016/0165-5728(93)90193-3

Endogenous gamma interferon produced in central nervous system by systemic infection infection with Theiler's virus in mice

Masashi Kohanawa 1,, Akio Nakane 1, Tomonori Minagawa 1
PMCID: PMC7119573  PMID: 8227318

Abstract

Theiler's virus GD VII strain causes acute encephalomyelitis by intracerebral inoculation. We established acute encephalomyelitis in mice by the intravenous (i.v.) inoculation of Theiler's virus GD VII strain. Replication of Theiler's virus injected i.v. could be observed in both the brain and spinal cord of mice, and interferon (IFN)-γ could be detected in the extracts of brain and spinal cord in parallel with viral replication. Furthermore, by the injection of anti-IFN-γ monoclonal antibody (mAb) on Day 1 post-infection (p.i.), mortality and virus titres in the spinal cord increased compared with the control mice treated with normal rat globulin. The histological exacerbation of inflammation was observed in spinal cord of anti-IFN-γ mAb-treated mice. These results indicate that endogenous IFN-γ, produced locally in the brain and spinal cord of mice through both antiviral action and anti-inflammatory action of IFN-γ in central nervous system, plays an important role in Theiler's virus infection.

Keywords: Theiler's virus, Endogenous interferon-γ, Central nervous system, Acute encephalomyelitis

References

  1. Abbott R., Bolderson I., Gruer P.J.K., Peatfield R.C. Immunoreactive IFN-γ in CSF in neurological disorders. J. Neurol. Psychiatry. 1987;50:882–885. doi: 10.1136/jnnp.50.7.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biron C.A., Turgiss L.R., Welsh R.M. Increase in NK cell number and turnover rate during acute viral infection. J. Immunol. 1983;131:1539–1545. [PubMed] [Google Scholar]
  3. Buchmeier N.A., Schreiber R.D. Vol. 82. 1985. Requirement for endogenous interferon-γ production for resolution of Listeria monocytogenes infection; pp. 7404–7408. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duong T.T., St. Louis J., Gilbert J.J., Finkelman F.D., Strejan G.H. Effect of anti-interferon-γ and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J. Neuroimmunol. 1992;36:105–115. doi: 10.1016/0165-5728(92)90042-j. [DOI] [PubMed] [Google Scholar]
  5. Finkelman F.D., Katona I.M., Mosmann T.R. IFN-γ regulates the isotypes of Ig secreted during in vivo humoral immune responses. J. Immunol. 1988;140:1022–1027. [PubMed] [Google Scholar]
  6. Frei K., Leist A., Meager A., Gallo P., Zinkernagel R.M., Fontana A. Production of B cell stimulatory factor-2 and interferon-γ in the central nervous system during viral meningitis and encephalitis. J. Exp. Med. 1988;168:449–453. doi: 10.1084/jem.168.1.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedmann A., Lorch Y. Theiler's virus infection: A model for multiple sclerosis. Prog. Med. Virol. 1985;31:43–83. [PubMed] [Google Scholar]
  8. Habu S., Akamatsu K., Tamaoki N., Okumura K. In vivo significance of NK cells on resistance against virus (HSV-1) infections in mice. J. Immunol. 1984;133:2743–2747. [PubMed] [Google Scholar]
  9. Hsu S.M., Raine L., Fanger H. A comparative study of the peroxidase-antiperoxidase method and avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. Soc. Clin. Pathol. 1981;75:734–739. doi: 10.1093/ajcp/75.5.734. [DOI] [PubMed] [Google Scholar]
  10. Issekutz T.B., Stoltz J.M., Van der Meide P. Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-γ. J. Immunol. 1988;140:2989–2993. [PubMed] [Google Scholar]
  11. Kuruvilla A.P., Shah R., Hochwald G.M., Liggitt H.D., Palladino M.A., Thorbecker G.H. Vol. 88. 1991. Protective effect of transforming growth factor β1 on experimetnal autoimmune disease in mice; pp. 2918–2921. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leist T.P., Eppler M., Zinkernagel R.M. Enhanced viruses replication and inhibition of lymphocytic choriomeningitis virus disease in anti-gamma interferon-treated mice. J. Virol. 1989;63:2813–2819. doi: 10.1128/jvi.63.6.2813-2819.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lipton H.L. Theiler's virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect. Immun. 1975;11:1147–1155. doi: 10.1128/iai.11.5.1147-1155.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipton H.L. Persistent Theiler's murine encephalomyelitis virus infection in mice depends on plaque size. J. Gen. Virol. 1980;46:169–177. doi: 10.1099/0022-1317-46-1-169. [DOI] [PubMed] [Google Scholar]
  15. Lipton H.L., Dal Canto M.C. Contrasting effects of immunosuppression on Theiler's virus infection in mice. Infect. Immun. 1977;15:903–909. doi: 10.1128/iai.15.3.903-909.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lorch Y., Friedmann A., Lipton H.L., Kotler M. Theiler's murine encephalomyelitis group includes two distinct genetic subgroups that differ phatologically and biological. J. Virol. 1981;40:560–567. doi: 10.1128/jvi.40.2.560-567.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lorch Y., Kotler M., Friedmann A. Persistent and acute central nervous system infections are caused by Theiler's murine encephalomyelitis viruses which differ in RNA composition but code for only slightly different protein. J. Virol. 1984;52:960–965. doi: 10.1128/jvi.52.3.960-965.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakane A., Minagawa T., Kohanawa M., Chen Y., Sato H., Moriyama M., Tsuruoka N. Interactions between endogenous gamma interferon and tumor necrosis factor in host resistance against primary and secondary Listeria monocytogenes infections. Infect. Immun. 1989;57:3331–3337. doi: 10.1128/iai.57.11.3331-3337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakane A., Numata A., Asano M., Kohanawa M., Chen Y., Minagawa T. Evidence that endogenous gamma interferon is produced early in Listeria monocytogenes infection. Infect. Immun. 1990;58:2386–2388. doi: 10.1128/iai.58.7.2386-2388.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nitayaphan S., Toth M.M., Roos R.P. Neutralizing monoclonal antibodies to Theiler's murine encephalomyelitis viruses. J. Virol. 1985;53:651–657. doi: 10.1128/jvi.53.2.651-657.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paya C.V., Patick A.K., Leibson P.J., Rodriguez M. Role of natural killer cell as immune effectors in encephalitis and demyelination induced by Theiler's virus. J. Immunol. 1989;143:95–102. [PubMed] [Google Scholar]
  22. Pevear D.C., Calenoff M., Rozhon E., Lipton H.L. Analysis of the complete nucleotide sequence of the picorna virus Theiler's murine encephalomyelitis virus indicates that is closely related to cardioviruses. J. Virol. 1987;61:490–496. doi: 10.1128/jvi.61.5.1507-1516.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robart D.C., Abzug M.J., Levin M.J. Development and application of RNA probes for the study of picornaviruses. Mol. Cell. Probes. 1988;2:65–73. doi: 10.1016/0890-8508(88)90045-x. [DOI] [PubMed] [Google Scholar]
  24. Rodriguez M., Quddus J. Effect of cyclosporin A, silica quarts dust, and protease inhibitors on virus-induced demyelination. J. Neuroimmunol. 1986;13:159–174. doi: 10.1016/0165-5728(86)90062-7. [DOI] [PubMed] [Google Scholar]
  25. Rodriquez M., Sriram S. Successful therapy of Theiler's virus-induced demyelination (DA strain) with monoclonal anti Lyt2 antibody. J. Immunol. 1988;140:2950–2955. [PubMed] [Google Scholar]
  26. Smith L.A., Barthold W.S., de Souza M.S., Bottomly K. The role of gamma interferon in infection of susceptible mice with murine coronavirus, MHV-JHM. Arch. Virol. 1991;121:89–100. doi: 10.1007/BF01316746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spintalny G.L., Havell E.A. Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J. Exp. Med. 1984;159:1560–1565. doi: 10.1084/jem.159.5.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Suzuki Y., Orellana M.A., Schreiber R.D., Remington J.S. Interferon-γ: the major mediator of resistance against Toxoplasma gondii. Science. 1988;240:516–518. doi: 10.1126/science.3128869. [DOI] [PubMed] [Google Scholar]
  29. Theiler M., Gard S. Characteristics and pathogenesis of the virus. J. Exp. Med. 1940;72:49–67. doi: 10.1084/jem.72.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Twardzik D.R., Mikovits J.A., Ranchalis J.E., Purchio A.F., Ellingsworth L., Ruscetti F.W. γ-Interferon-induced activation of latent transforming growth factor-β by human monocytes. Ann. NY Acad. Sci. 1990;593:276–284. doi: 10.1111/j.1749-6632.1990.tb16119.x. [DOI] [PubMed] [Google Scholar]
  31. Welsh C.J.R., Tonks P., Nash A.A., Blakemore W.F. The effect of L3T4 cell depletion on the pathogenesis of Theiler's murine encephalomyelitis virus infection in CBA mice. J. Gen. Virol. 1987;68:1659–1667. doi: 10.1099/0022-1317-68-6-1659. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES