Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Dec 10;46(1):217–224. doi: 10.1016/0165-5728(93)90252-T

Synergistic interaction between measles virus infection and myelin basic protein peptide-specific T cells in the induction of experimental allergic encephalomyelitis in Lewis rats

Uwe G Liebert 1,, Volker ter Meulen 1
PMCID: PMC7119583  PMID: 7689589

Abstract

The questions how a viral infection induces cellular autoimmune reactions (CMAI) and which components of both virus and auto-antigen play part in this process were addressed in our animal model of measles virus (MV)-induced CMAI against myelin basic protein (MBP) during subacute measles encephalitis (SAME). In an attempt to define whether cellular or humoral immune responses are involved in the occurrence of the autoimmune based disease process, Lewis rats were treated with different combinations of antibodies and T cells reactive with either MV and its structural proteins or MBP and MBP-peptides. The only treatment combination after which experimental allergic encephalomyelitis (EAE)-like disease and pathology developed was when non-encephalitogenic T cells reactive against residues 69–81 of MBP were adoptively transferred into MV-infected Lewis rats. The results of the study show that T cells which are non-encephalitogenic in the normal central nervous tissue are capable of inducing an allergic encephalomyelitis in animals with a viral infection involving the brain.

Keywords: Autoimmunity, Measles virus, Central nervous system, Experimental allergic encephalomyelitis, Myelin basic protein

References

  1. Abou-Zeid C., Filley E., Steel J., Rook G.W.A. A simple new method for using antigens separated-by polyacrylamide gel electrophoresis to stimulate lymphocytes in vitro after converting bands cut from Western blot into antigen bearing particles. J. Immunol. Methods. 1987;98:5–11. doi: 10.1016/0022-1759(87)90429-7. [DOI] [PubMed] [Google Scholar]
  2. Carter M.J., Willcocks M.M., Löffler S., ter Meulen V. Relationships between monoclonal antibody binding sites on the measles virus haemagglutinin. J. Gen. Virol. 1982;63:113–120. doi: 10.1099/0022-1317-63-1-113. [DOI] [PubMed] [Google Scholar]
  3. Eylar E.H., Kniskern P.J., Jackson J.J. Myelin basic protein. Methods Enzymol. 1979;32B:323. [PubMed] [Google Scholar]
  4. Hashim G.A., Day E.D. Role of antibodies in T cell-mediated experimental allergic encephalomyelitis. J. Neurosci. Res. 1988;21:1–5. doi: 10.1002/jnr.490210102. [DOI] [PubMed] [Google Scholar]
  5. Hashim G.A., Day E.D., Fredane L., Intintola P., Carvalho E. Biological activity of region 65–102 of the myelin basic protein. J. Neurosci. Res. 1986;16:467–478. doi: 10.1002/jnr.490160303. [DOI] [PubMed] [Google Scholar]
  6. Hünig T., Wallny H.J., Hartley J.K., Lawetzky A., Tiefenthaler G. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. J. Exp. Med. 1989;169:73–78. doi: 10.1084/jem.169.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson R.T. The pathogenesis of acute viral encephalitis and postinfectious encephalomyelitis. J. Infect. Dis. 1987;115:359–364. doi: 10.1093/infdis/155.3.359. [DOI] [PubMed] [Google Scholar]
  8. Körner H., Shliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddel S., Wege H. Nucleocapsid or spike protein-specific CD4+ T lymphocytes protect against coronavirus-induced encephalomyelitis in the absence of CD8+ T cells. J. Immunol. 1991;147:2317–2323. [PubMed] [Google Scholar]
  9. Lassmann H. Springer Verlag; Berlin-Heidelberg-New York-Tokyo: 1983. Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. [PubMed] [Google Scholar]
  10. Lassmann H., Brunner C., Bradl M., Linington C. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathol. Berl. 1988;75:566–576. doi: 10.1007/BF00686201. [DOI] [PubMed] [Google Scholar]
  11. Liebert U.G., ter Meulen V. Virological aspects of measles virus induced encephalomyelitis in Lewis and BN rats. J. Gen. Virol. 1987;68:1715–1722. doi: 10.1099/0022-1317-68-6-1715. [DOI] [PubMed] [Google Scholar]
  12. Liebert U.G., Schneider-Schaulies S., ter Meulen V. Measles encephalitis in rats: a model for virus induced autoimmune reactions. In: Confavreux C., Aimard G., Devic M., editors. Trends in European Multiple Sclerosis Research. Elsevier; Amsterdam: 1988. pp. 133–139. [Google Scholar]
  13. Liebert U.G., Hashim G., ter Meulen V. Characterization of measles virus-induced cellular autoimmune reactions against myelin basic protein in Lewis rats. J. Neuroimmunol. 1990;29:139–147. doi: 10.1016/0165-5728(90)90156-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linington C., Bradl M., Lassman H., Brunner C., Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/ oligodendrocyte glycoprotein. Am. J. Pathol. 1988;140:443–454. [PMC free article] [PubMed] [Google Scholar]
  15. Moskophidis D., Frei K., Löhler J., Fontana A., Zinkernagel R. Production of random classes of immunoglobulins in brain tissue during persistent viral infection parallelled by secretion of interleukin-6 (IL-6) but not IL-4, IL-5 and gamma interferon. J. Virol. 1991;65:1364–1369. doi: 10.1128/jvi.65.3.1364-1369.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Offner H., Hashim G., Vandenbark A.A. Response of rat encephalitogenic T lymphocyte lines to synthetic peptides of myelin basic protein. J. Neurosci. Res. 1987;17:344–348. doi: 10.1002/jnr.490170404. [DOI] [PubMed] [Google Scholar]
  17. Piani D., Frei K., Quang Do K., Cuenoid M., Fontana A. Murine brain macrophage induce NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci. Lett. 1991;133:159–163. doi: 10.1016/0304-3940(91)90559-c. [DOI] [PubMed] [Google Scholar]
  18. Reich A., Erlwein O., Niewiesk S., ter Meulen V., Liebert U.G. CD4+ T cells control measles virus infection of the central nervous system. Immunology. 1992;76:185–191. [PMC free article] [PubMed] [Google Scholar]
  19. Sedgwick J., Brostoff S., Mason D. Experimental allergic encephalomyelitis in the absence of a classical delayed-type hypersensitivity reaction. Severe paralytic disease correlates with the presence of interleukin 2 receptor-positive cells infiltrating the central nervous system. J. Exp. Med. 1987;165:1058–1075. doi: 10.1084/jem.165.4.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shankar V., Kao M., Hamir A.N., Sheng H., Koprowski H., Dietzschold B. Kinetics of virus spread and changes in levels of several cytokine mRNAs in the brain after intranasal infection of rats with Borna disease virus. J. Virol. 1992;66:992–998. doi: 10.1128/jvi.66.2.992-998.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ter Meulen V. Virus-induced cell-mediated autoimmunity. In: Notkins A., Oldstone M.B.A., editors. Concepts in Viral Pathogenesis. Springer Verlag; Berlin: 1989. pp. 297–303. [Google Scholar]
  22. Ter Meulen V., Löffler S., Carter M., Stephenson J.R. Antigenic characterization of measles and SSPE virus haemagglutinin by monoclonal antibodies. J. Gen. Virol. 1981;57:357–364. doi: 10.1099/0022-1317-57-2-357. [DOI] [PubMed] [Google Scholar]
  23. Torres-Nagel N.E., Gold D.P., Hünig T. Identification of rat Tcrb-V8.2, 8.5 and 10 gene products by monoclonal anti-bodies. Immunogenetics. 1993;37:305–308. doi: 10.1007/BF00187460. [DOI] [PubMed] [Google Scholar]
  24. Zamvil S.S., Nelson P.A., Mitchell D.J., Knobler R.L., Fritz R.B., Steinman L. Encephalitogenic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J. Exp. Med. 1985;162:2107–2124. doi: 10.1084/jem.162.6.2107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES