Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2005 Mar 7;12(3):225–233. doi: 10.1016/S0165-5728(86)80006-6

Recognition of major histocompatibility complexantigens on murine glial cells

Gary Birnbaum 1,*, Birgitta Clinchy 2,**, Michael B Widmer 2
PMCID: PMC7119635  PMID: 3488333

Summary

Recognition of autologous major histocompatibility complex (MHC) antigens by T cells is an essential step in the induction of an immunologic reaction to either endogenous or exogenous antigens. We investigated the ability of murine glial cells of different ages to stimulate clones of allospecific T lymphocytes. We also investigated the effects of supernatants from cultures of activated T cells on the immunologic recognition of MHC antigens on murine glial cells.

Lymphocyte clones specific for Class I, Class II and non-MHC, background antigens were obtained from C57B1/6J-anti-DBA/2 mixed lymphocyte cultures. Glial cell cultures were prepared from newborn syngeneic (C57B1/6J) and allogeneic (DBA/2) mouse brains. Glial cultures 1–4 weeks of age were able to stimulate α-Class I-specific clones. No stimulation of α-Class II or α-background clones was noted. Incubation of glial cells with supernatants from cultures of alloantigen-activated spleen cells (C57131/0-anti-DBA/2) resulted in a decreased ability of glial cells to stimulate a-Class I responses. In contrast supernatant-treated cultures acquired the capacity to stimulate a-Class II-specific clones. No responses were noted in clones responsive to non-MHC antigens. The ability to stimulate α-Class II-specific clones was most prominent with one-week-old glial cultures and was lost by four weeks of culture. The increased susceptibility of younger glial cultures to the modulatory effects of lymphokines from activated T cells may be a factor in the increased susceptibility of the immature central nervous system to persistent viral infections and the development of autoimmune phenomena.

Key words: Murine glial cells, Major histocompatibility complex antigens

Footnotes

Supported by Research Grant No. RG-1516-A-5 from the National Multiple Sclerosis Society and Grant No. R23AII9200 from the National Institutes of Health. M.B.W. is a Scholar of the Leukemia Society of America.

References

  1. Block I.B. Stages of neurotransmitter development in autonomic neurons. Science. 1982;215:1198–1204. doi: 10.1126/science.215.4537.1198. [DOI] [PubMed] [Google Scholar]
  2. Cairns J.S., Curtsinger J.M., Dahl C.A., Freeman S., Alter B.J., Bach F.H. Sequence polymorphism of HLA DRβ1 alleles relating to T-cell recognized determinants. Nature. 1985;317:166–168. doi: 10.1038/317166a0. [DOI] [PubMed] [Google Scholar]
  3. Currier R.D., Martin E.A., Woosley P.C. Prior events in multiple sclerosis. Neurology. 1974;24:748–754. doi: 10.1212/wnl.24.8.748. [DOI] [PubMed] [Google Scholar]
  4. Fontana A., Kristensen F., Dubs R. Production of prostaglandin E and interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immunol. 1982;129:2413–2419. [PubMed] [Google Scholar]
  5. Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  6. Hirsch M.R., Weitzerbin J., Pierres M., Garichs C. Expression of Ia antigens by cultured astrocytes treated with gamma-interferon. Neurosci. Lett. 1983;41:199–204. doi: 10.1016/0304-3940(83)90247-1. [DOI] [PubMed] [Google Scholar]
  7. Kennedy C. A ten-year experience with subacute sclerosing panencephalitis. Neurology. 1968;18:58–59. doi: 10.1212/wnl.18.1_part_2.058. [DOI] [PubMed] [Google Scholar]
  8. Krakauer R.S., Sundeen J., Saunder D.N., Scherbel A. Abnormalities of immunoregulation in progressive systemic sclerosis: evidence for excess helper-cell function and altered B-cell function. Arch. Dermatol. 1981;117:80–82. [PubMed] [Google Scholar]
  9. Lublin F.D., Maurer P.H., Berry R.G., Tippett D. Delayed, relapsing experimental allergic encephalomyelitis in mice. J. Immunol. 1981;126:819–822. [PubMed] [Google Scholar]
  10. MacDonald H.R., Cerottini J.-C., Ryser J.-E. Quantitation and cloning of cytolytic T lymphocytes and their precursors. Immunol. Rev. 1980;51:93–123. doi: 10.1111/j.1600-065x.1980.tb00318.x. [DOI] [PubMed] [Google Scholar]
  11. Merrill J.E., Kutsunai S., Mohlstrom C., Hofman F., Groopman J., Golde D.W. Proliferation of astroglia and oligodendroglia in response to human T-cell derived factors. Science. 1984;224:1428–1430. doi: 10.1126/science.6610212. [DOI] [PubMed] [Google Scholar]
  12. Miller H.G., Stanton J.B., Gibbons J.L. Para-infectious encephalomyelitis and related syndromes. A critical review of the neurological complications of certain specific fevers. Quart. J. Med. 1956;25:427–505. [PubMed] [Google Scholar]
  13. Miller K.B., Salem S. Immune regulatory abnormalities produced by procainamide. Am. J. Med. 1982;73:487–492. doi: 10.1016/0002-9343(82)90326-6. [DOI] [PubMed] [Google Scholar]
  14. Nelson P.G. Nerve and muscle cells in culture. Physiol. Rev. 1975;55:1–61. doi: 10.1152/physrev.1975.55.1.1. [DOI] [PubMed] [Google Scholar]
  15. Ryser J.-E., Cerottini J.-C., Brunner K.T. Generation of cytolytic T-lymphocytes in vitro. IX. Induction of secondary CTL responses in primary long-term MLC by supernates from secondary MLC. J. Immunol. 1978;120:370–377. [PubMed] [Google Scholar]
  16. Snell G.D. T cells, T cell recognition structures, and the major histocompatibility complex. Immunol. Rev. 1978;38:3–69. doi: 10.1111/j.1600-065x.1978.tb00384.x. [DOI] [PubMed] [Google Scholar]
  17. Stone S.H., Lerner E.M., II Chronic disseminated allergic encephalomyelitis in guinea pigs. Ann. N.Y. Acad. Sci. 1965;122:227–241. doi: 10.1111/j.1749-6632.1965.tb20206.x. [DOI] [PubMed] [Google Scholar]
  18. Swaiman K.F., Neale E.A., Fitzgerald S., Nelson P.G. A method for large scale production of fetal mouse cerebral cortical cultures. Dev. Brain Res. 1982;3:361–369. doi: 10.1016/0165-3806(82)90004-9. [DOI] [PubMed] [Google Scholar]
  19. Takiguchi M., Ting J.P.Y., Buessow S.C., Bayer C., Gillespie Y., Frelinger J.A. Response of glioma cells to interferon-gamma: increase in Class II RNA protein and mixed lymphocyte reaction-stimulating ability. Eur. J. Immunol. 1985;15:809–814. doi: 10.1002/eji.1830150813. [DOI] [PubMed] [Google Scholar]
  20. Theofilopoulos A.N., Eisenberg R.A., Bourdon M. Distribution of lymphocytes identified by surface markers in murine strains with systemic lupus erythematosus-like syndromes. J. Exp. Med. 1979;149:516–534. doi: 10.1084/jem.149.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Watanabe R., Wege H., ter Meulen V. Adoptive transfer of EAE like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature. 1983;305:150–152. doi: 10.1038/305150a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Widmer M.B., Bach F.H. Antigen-driven helper cell independent cloned cytolytic T lymphocytes. Nature. 1981;294:750–752. doi: 10.1038/294750a0. [DOI] [PubMed] [Google Scholar]
  23. Wolinsky J.S., Berg B.O., Maitland C.J. Progressive rubella panencephalitis. Arch. Neurol. 1976;33:772–773. doi: 10.1001/archneur.1976.00500100056016. [DOI] [PubMed] [Google Scholar]
  24. Wong G.H.W., Bartlett P.F., Clark-Lewis I. Inducible expression of H-2 and la antigens on brain cells. Nature. 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  25. Wong G.H.W., Bartlett P.R., Clark-Lewis I., McKimm-Breschkin J.L., Schrader J.W. Interferon-γ induces the expression of H-2 and la antigens on brain cells. J. Neuroimmunol. 1985;7:255–278. doi: 10.1016/s0165-5728(84)80026-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES