Abstract
We recently found that microglia, brain macrophages, express interleukin-4 (IL-4) receptor mRNA in vitro. Since IL-4 exhibits a variety of functions on the cells of monocyte-macrophage lineage, we examined the effects of IL-4on the functions of microglia. Recombinant IL-4 induced the proliferation of microglia in a dose- and time-dependent manner as determined by MTT colorimetric assay, [3H]thymidine uptake and bromodeoxyuridine (BrdU) incorporation. IL-4 also synergistically enhanced the proliferation of microglia with such colony-stimulating factors as IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). It also increased acid phosphatase activity and superoxide anion formation by these cells. Despite these positive effects on proliferation and activation, IL-4 suppressed the IFN γ-induced class II MHC antigen expression in these cells. Since these effects of recombinant IL-4 inhibited by the addition of monoclonal antibody against IL-4 receptors, the effects of IL-4 on microglia appear to be a specific function via IL-4 receptors. Although microglia and astrocytes produce a variety of immunoregulatory cytokines, neither cell produced IL-4 as determined by bioassay or detection of IL-4 mRNA by RT-PCR method. Thus, the exogenous IL-4 may contribute to the accumulation of microglia in or around inflammatory lesions in the central nervous system, and may be involved in the regulatory mechanisms of microglia.
Keywords: Microglia, Interleukin-4, Proliferation, Major histocompatibility complex, Glia, Cytokine
References
- Abramson S.L., Gallin J.I. IL-4 inhibits superoxide production by human mononuclear phagocytes. J. Immunol. 1990;144:625–630. [PubMed] [Google Scholar]
- Akagawa K., Takasuka N. Proc. 27th Joint Res. Conference on Leprosy and Tuberculosis. U.S.-Japan Cooperative Medical Science Program; 1992. Effects of interleukin 4 on growth and differentiation of human monocytes; pp. 168–172. [Google Scholar]
- Araujo D.M., Cotman C.W. Trophic effects of interleukin-4, 7, and -8 on hippocampal neuronal cultures: potential involvement of glial derived factors. Brain Res. 1993;600:49–55. doi: 10.1016/0006-8993(93)90400-h. [DOI] [PubMed] [Google Scholar]
- Austin J.M., Gordon S. F4/80, a monoclonal antidy directed against the mouse macrophage. Eur. J. Immunol. 1981;11:805–811. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
- Awatsuji H., Furukawa Y., Kirota M., Murakami Y., Nii S., Furukawa S., Hayashi K. Interleukin-4 and -5 as modulators of nerve growth factor synthesis/secretion in astrocytes. J. Neurosci. Res. 1993;34:539–545. doi: 10.1002/jnr.490340506. [DOI] [PubMed] [Google Scholar]
- Bishop G.A., McMillan M.S., Haughton G., Frelinger J.A. Signaling to a B-cell clone by E-k, but not A-k, does not reflect alteration of A-k genes. Immunogenetics. 1988;28:184–192. doi: 10.1007/BF00375858. [DOI] [PubMed] [Google Scholar]
- Cao H., Wolff R.G., Meltzer M.S., Crawford R.M. Differential regulation of class II MHC determinants on macrophages by IFNγ and IL-4. J. Immunol. 1989;143:3524–3531. [PubMed] [Google Scholar]
- Chao C.C., Molitor T.W., Hu S. Neuroprotective role of IL-4 against activated microglia. J. Immunol. 1993;151:1473–1481. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Coffman R., Ohara J., Bond M., Carty J., Zlontnick A., Paul W.E. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide activated B cells. J. Immunol. 1985;136:4538–4541. [PubMed] [Google Scholar]
- Crawford R.M., Finbloom D.S., O'Hara J., Paul W.E., Meltzer M.S. B cell stimulatory factor-1 (interleukin-4) activates macrophages for increased tumoricidal activity and expression of Ia antigens. J. Immunol. 1987;139:135–141. [PubMed] [Google Scholar]
- Defrance T., Aubry J.P., Rousset F., Vanbervliet B., Bonnefoy J.Y., Arai N., Takebe Y., Yokota T., Lee F., Arai K., deVries J., Banchereau J. Human recombinant IL-4 induces Fe receptors (CD23) on normal human B lymphocytes. J. Exp. Med. 1987;165:1459–1467. doi: 10.1084/jem.165.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Rio-Hortega P. Microglia. In: Penfield W., editor. Cytology and Cellular Pathology of the Nervous System. Hocker; New York, NY: 1932. p. 481. [Google Scholar]
- Duchen L.W. General pathology of neurons and neuroglia. In: Adams J.H., Duchen L.W., editors. Greenfield's Neuropathology. Edward Arnold; London: 1992. p. 1. [Google Scholar]
- Essner R., Rhoades K., McBride W.H., Morton D.L., Economou J.S. IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J. Immunol. 1989;142:3857–3861. [PubMed] [Google Scholar]
- Gautam S., Tebo J.M., Hamilton T.A. IL-4 suppresses cytokine gene expression induced by IFNγ and/or IL-2 in murine peritoneal macrophages. J. Immunol. 1992;148:1725–1730. [PubMed] [Google Scholar]
- Gearing A.J.H., Cartwright J.E., Wadhwa M. Biological and immunological assays for cytokines. In: Thomson A., editor. Academic Press; London: 1991. pp. 339–355. (The Cytokine Handbook). [Google Scholar]
- Giulian D. Ameboid microglia effectors of inflammation in the central nervous system. J. Neurosci. Res. 1987;18:155–171. doi: 10.1002/jnr.490180123. [DOI] [PubMed] [Google Scholar]
- Giulian D., Baker T.J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 1896;6:2163–2178. doi: 10.1523/JNEUROSCI.06-08-02163.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart P.H., Vitti G.F., Burgess D.R., Whitty G.A., Piccoli D.S., Hamilton J.A. Vol. 86. 1989. Potential antiinflammatory effects of interleukin 4: Suppression of human monocyte tumor necrosis factor α, interleukin 1 and prostaglandin E2; pp. 3803–3807. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickey W.F., Kimura H. Perivascular microglia cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239:290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
- Howard M., Farrar J., Hilfiker M., Johnson B., Takatsa K., Hamaoka T., Paul W.E. Identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 1982;155:914–923. doi: 10.1084/jem.155.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter C.A., Roberts G.W., Alexander J. Kinetics of cytokine mRNA production in the brains of mice with progressive toxoplasmic encephalitis. Eur. J. Immunol. 1992;22:2317–2322. doi: 10.1002/eji.1830220921. [DOI] [PubMed] [Google Scholar]
- Imamura K., Ito M., Suzumura A., Asai J., Takahashi A. Generation and characterization of monoclonal antibodies against rat microglia and ontogenic distribution of positive cells. Lab. Invest. 1990;63:853–861. [PubMed] [Google Scholar]
- Kennedy M.K., Torance D.S., Picha K.S., Mohler M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol. 1992;149:2496–2505. [PubMed] [Google Scholar]
- Lee F., Yokota T., Otsuka T., Meyerson P., Villaret D., Coffman R., Mosmann T., Rennick D., Roehm N., Smith C., Zlontnik A., Arai K. Vol. 83. 1986. Isolation and characterization of a mouse interleukin cDNA clone that express B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities; pp. 2061–2065. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman A., Pitha P.M., Shin H. Vol. 86. 1989. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus; pp. 6348–6352. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowenthal J.W., Castle B.E., Christiansen J., Schreurs J., Rennick D., Arai N., Hoy P., Takebe Y., Howard M. Expression of high affinity receptors for murine interleukin 4 (BSF-1) on hematopoietic and nonhematopoietic cells. J. Immunol. 1988;140:456–464. [PubMed] [Google Scholar]
- Moskophidis D., Frei K., Lohler J., Fontana A., Zinkernagel R.M. Production of random classes of immunoglubulins in brain tissue during persistent viral infection paralleled by secretion on IL-6 but not IL-4, IL-5 and gamma interferon. J. Virol. 1991;65:1364–1369. doi: 10.1128/jvi.65.3.1364-1369.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosmann T.R., Fong T.A.T. Specific assays for cytokine production by T cell. J. Immunol. Methods. 1989;116:151–159. doi: 10.1016/0022-1759(89)90198-1. [DOI] [PubMed] [Google Scholar]
- Ohara J., Paul W.E. High affinity receptors for B cell stimulatory factor-1 (interleukin-4) expressed on lymphocytes and other cells of hematopoietic lineage. Nature. 1987;325:537–540. doi: 10.1038/325537a0. [DOI] [PubMed] [Google Scholar]
- Ohmori K., Hong Y., Fujiwara M., Matsumoto Y. In situ during experimental autoimmune encephalomyetis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab. Invest. 1992;66:54–62. [PubMed] [Google Scholar]
- Ohno K., Suzumura A., Sawada M., Marunochi T. Production of granulocyte/macrophage colony stimulating factor by cultured astrocytes. Biochem. Biophys. Res. Comm. 1990;169:719–724. doi: 10.1016/0006-291x(90)90390-9. [DOI] [PubMed] [Google Scholar]
- Oswald I.P., Gazzinelli R.T., Sher A., James S.L. IL-10 synergizes with IL-4 and transforming growth factor-β to inhibit macrophage cytotoxic activity. J. Immunol. 1992;148:3578–3582. [PubMed] [Google Scholar]
- Paul W.E., Ohara J. B cell stimulatory factor-1/interleukin 4. Annu. Rev. Immunol. 1987;5:429–459. doi: 10.1146/annurev.iy.05.040187.002241. [DOI] [PubMed] [Google Scholar]
- Perry V.H., Hume D.A., Gordon S. Immunuhistochemical localization of macrophage and microglia in the adult and developing mouse brain. Neuroscience. 1985;15:313–326. doi: 10.1016/0306-4522(85)90215-5. [DOI] [PubMed] [Google Scholar]
- Righi M., Mori L., Deliberao G., Sironi M., Biodi A., Mantovani A., Donini S.D., Ricciardi-Castagnoli P. Monokine production by microglial cell clones. Eur. J. Immunol. 1989;19:1443–1448. doi: 10.1002/eji.1830190815. [DOI] [PubMed] [Google Scholar]
- Sawada M., Kondo N., Suzumura A., Marunouchi T. Production of tumor necrosis factor-alpha microglia and astrocytes in culture. Brain Res. 1989;491:394–397. doi: 10.1016/0006-8993(89)90078-4. [DOI] [PubMed] [Google Scholar]
- Sawada M., Suzumura A., Yamamoto H., Marunouchi T. Activation and prolifeeration of isolated involvement of protein kinase C. Brain Res. 1990;509:119–124. doi: 10.1016/0006-8993(90)90317-5. [DOI] [PubMed] [Google Scholar]
- Sawada M., Suzumura A., Marunouchi T. TNFα induces IL-6 production by astrocytes but not by microglia. Brain Res. 1992;583:296–299. doi: 10.1016/s0006-8993(10)80037-x. [DOI] [PubMed] [Google Scholar]
- Sawada M., Ito Y., Suzumura A., Maunouchi T. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci. Lett. 1993;160:131–134. doi: 10.1016/0304-3940(93)90396-3. [DOI] [PubMed] [Google Scholar]
- Schmidt R.P., Gonyea E.F. Neurosyphilis. In: Baker A.B., Baker L.H., editors. Vol. 2. Harper&Row; New York, NY: 1976. pp. 1–16. (Clinical Neurology). [Google Scholar]
- Sebire G., Emilie D., Wallon C., Hery C., Devergne O., Delfraissy J.-F., Galanaud P., Tardieu M. In vitro productin of IL-6, IL-1beta and tumor necrosis factor-alpha by human embryonic microglia and neural cells. J. Immunol. 1993;150:1517–1523. [PubMed] [Google Scholar]
- Sharer L.R. Pathology of HIV-1 infection of the central nervous system: A review. J. Neuropathol. Exp. Neurol. 1992;51:3–11. doi: 10.1097/00005072-199201000-00002. [DOI] [PubMed] [Google Scholar]
- Sideras P., Bergstedt-Lindquist S., Severnson E. Partial biochemical characterization of IgG1-inducing factor. Eur. J. Immunol. 1985;15:593–598. doi: 10.1002/eji.1830150612. [DOI] [PubMed] [Google Scholar]
- Suzumura A., Bhat S., Eccleston P.A., Lisak R.P., Silberberg D.H. The isolation and long term culture of oligodendrocytes from newborn mouse brain. Brain Res. 1984;324:379–384. doi: 10.1016/0006-8993(84)90054-4. [DOI] [PubMed] [Google Scholar]
- Suzumura A., Mezitis S.G.E., Gonatas N.K., Silberberg D.H. MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: induction of Ia antigen expression by gamma-interferon. J. Neuroimmunol. 1987;15:263–278. doi: 10.1016/0165-5728(87)90121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzumura A., Lavi E., Bhat S., Murasko D., Weiss S.R., Silberg D.H. Induction of glial cell MHC antigen expression in neurotropic corona virus infection: characterization of the H-2 inducing soluble factor elaborated by infected brain cells. J. Immunol. 1988;140:2068–2072. [PubMed] [Google Scholar]
- Suzumura A., Sawada M., Yamamoto H., Marunouchi T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 1990;30:111–120. doi: 10.1016/0165-5728(90)90094-4. [DOI] [PubMed] [Google Scholar]
- Suzumura A., Marunouchi T., Yamamoto H. Morphological transformation of microglia in vitro. Brain Res. 1991;545:301–306. doi: 10.1016/0006-8993(91)91302-h. [DOI] [PubMed] [Google Scholar]
- Suzumura A., Sawada M., Yamamoto H., Marunouchi T. Transforming growth factor β suppresses activation and proliferation of microglia in vitro. J. Immunol. 1993;151:2150–2158. [PubMed] [Google Scholar]
- Vitetta E., Ohara J., Myers C., Layton J., Krammer P., Paul W.E. Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J. Exp. Med. 1985;162:1726–1731. doi: 10.1084/jem.162.5.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wucherpfennig K.W., Newcombe J., Li H., Keddy C., Cuzner M.L., Hafler D.A. T cell receptor Vα-Vβ repertone and cytokine gene expression in active multiple sclerosis lesions. J. Exp. Med. 1992;175:993–1002. doi: 10.1084/jem.175.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlontnik A., Fischer M., Roehm N., Zipori D. Evidence for effects of B cell stimulatory factor 1 on macrophages: enhancement of the antigen presenting ability of bone marrow-derived macrophages. J. Immunol. 1987;138:4275–4279. [PubMed] [Google Scholar]