Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;30(2):261–274. doi: 10.1016/0165-2427(92)90143-E

In vitro responses of cheetah mononuclear cells to feline herpesvirus-1 and Cryptococcus neoformans

Michele A Miller-Edge 1, Michael B Worley 1,1
PMCID: PMC7119742  PMID: 1317618

Abstract

In vitro T cell function by domestic cats and cheetahs to two common pathogens, feline herpesvirus-1 (FHV-1) and Cryptococcus neoformans, was assessed. Peripheral blood mononuclear cells (PBM) were stimulated with two strains of UV-inactivated FHV-1, whole heat-killed organisms or capsular antigen of Cryptococcus neoformans, and proliferative responses measured. As a group, cheetah PBM responded significantly poorer than domestic cat PBM when cultured with FHV-1. However, individual cheetah responses varied widely. Supplementation of cultures with exogenous interleukin 2 (IL-2) significantly increased the level of response of individual cheetahs to both strains of FHV-1. Cheetah sera contained slightly higher neutralizing antibody titers to FHV-1 than did domestic cat sera, suggesting that B cells function adequately in cheetahs. When stimulated with Cryptococcus neoformans, both species had similar incidences of positive proliferative responses.

These data demonstrate that cheetahs exhibit heterogeneous responses to specific antigens, similar to domestic cats. However, a lower group response to FHV-1 in cheetahs suggests species differences occur. In addition, level of variability in major histocompatibility complex (MHC) class I-like genes, as determined by Southern blot hybridization, does not appear to correlate with a uniform response in in vitro functional assays. Therefore, additional mechanisms influence the final outcome of the immune response.

References

  1. Alexander A.J., Bailey E., Woodward J.G. Analysis of the equine lymphocyte antigen system by southern blot hybridization. Immunogenetics. 1987;25:47–54. doi: 10.1007/BF00768832. [DOI] [PubMed] [Google Scholar]
  2. Batchelor J.R., McMichael A.J. Progress in understanding HLA and disease association. Br. Med. Bull. 1987;43:156–183. doi: 10.1093/oxfordjournals.bmb.a072169. [DOI] [PubMed] [Google Scholar]
  3. Briggs M.B., Ott R.L. Feline leukemia virus infection in a captive cheetah and the clinical and antibody response of six captive cheetahs to vaccination with a subunit feline leukemia virus vaccine. J. Am. Vet. Med. Assoc. 1986;189:1197–1199. [PubMed] [Google Scholar]
  4. Carter J.J., Weinberg A.D., Pollard A., Reeves R., Magnuson J.A., Magnuson N.S. Inhibition of T-lymphocyte mitogenic responses and effects on cell functions by bovine herpesvirus 1. J. Virol. 1989;63:1525–1530. doi: 10.1128/jvi.63.4.1525-1530.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clerici M., Stocks N.I., Zajac R.A., Boswell R.N., Bernstein D.C., Mann D.L., Shearer G.M., Berzofsky J.A. Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV-seropositive individuals. Nature (London) 1989;339:383–385. doi: 10.1038/339383a0. [DOI] [PubMed] [Google Scholar]
  6. Cockerell G.L., Hoover E.A., LoBuglio A.F., Yohn D.S. Phytomitogen- and antigen-induced blast transformation of feline lymphocytes. Am. J. Vet. Res. 1975;36:1489–1494. [PubMed] [Google Scholar]
  7. Del Gobbo V., Villani N., Marini S., Balestra E., Calio R. Suppressor cells induced by influenza virus inhibit interleukin-2 production in mice. Immunology. 1990;69:454–459. [PMC free article] [PubMed] [Google Scholar]
  8. Evermann J.F., Heeney J.L., Roelke M.E., McKeirnan A.J., O'Brien S.J. Biological and pathological consequences of feline infectious peritonitis virus infection in the cheetah. Arch. Virol. 1988;102:155–171. doi: 10.1007/BF01310822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filion L.G., McGuire R.L., Babiuk L.A. Nonspecific suppressive effect of bovine herpesvirus type 1 on bovine leukocyte functions. Infect. Immun. 1983;42:106–112. doi: 10.1128/iai.42.1.106-112.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gammon G., Klotz J., Ando D., Sercarz E.E. The T cell repertoire to a multideterminant antigen. Clonal heterogeneity of the T cell response, variation between syngeneic individuals, and in vitro selection of T cell specificities. J. Immunol. 1990;144:1571–1577. [PubMed] [Google Scholar]
  11. Hammerberg C., Schurig G.G., Ochs D.L. Immunodeficiency in young pigs. Am. J. Vet. Res. 1989;50:868–874. [PubMed] [Google Scholar]
  12. Heeney J.L., Evermann J.F., McKeirnan A.J., Marker-Kraus L., Roelke M.E., Bush M., Wildt D.E., Meltzer D.G., Colly L., Lukas J., Manton V.J., Caro T., O'Brien S.J. Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (Acinonyx jubatus) J. Virol. 1990;64:1964–1972. doi: 10.1128/jvi.64.5.1964-1972.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kateley J.R., Bazzell S.J. Immunologic studies in Holstein-Friesian cattle: an immunocompetence profile. Am. J. Vet. Res. 1978;39:1683–1687. [PubMed] [Google Scholar]
  14. Kawashima K., Platt K.B. The effect of human recombinant interleukin-2 on the porcine immune response to a pseudorabies virus subunit vaccine. Vet. Immunol. Immunopathol. 1989;22:345–353. doi: 10.1016/0165-2427(89)90170-0. [DOI] [PubMed] [Google Scholar]
  15. Kierszenbaum F., Sztein M.B., Beltz L.A. Decreased human IL-2 receptor expression due to a protozoan pathogen. Immunol. Today. 1989;10:129–131. doi: 10.1016/0167-5699(89)90246-6. [DOI] [PubMed] [Google Scholar]
  16. Leist T., Althage A., Haenseler E., Hengartner H., Zinkernagel R.M. Major histocompatibility complex-lined susceptibility or resistance to disease caused by a noncytopathic virus varies with the disease parameter evaluated. J. Exp. Med. 1989;170:269–277. doi: 10.1084/jem.170.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopez C., O'Reilly R.J. Cell-mediated immune responses in recurrent herpesvirus infections. I. Lymphocyte proliferation assay. J. Immunol. 1977;118:895–902. [PubMed] [Google Scholar]
  18. Maniatis T., Fritsch E.F., Sambrook J. A Laboratory Manual. Cold Spring Harbor Press; Cold Spring Harbor, NY: 1982. Molecular Cloning; pp. 382–386. [Google Scholar]
  19. Miller-Edge M., Splitter G. Detection of impaired T cell-mediated immune responses to herpesvirus (BHV-1) in cattle. Vet. Immunol. Immunopathol. 1986;13:1–18. doi: 10.1016/0165-2427(86)90044-9. [DOI] [PubMed] [Google Scholar]
  20. Miller-Edge M., Worley M. In vitro mitogen responses and lymphocyte subpopulations in cheetahs. Vet. Immunol. Immunopathol. 1991;28:337–349. doi: 10.1016/0165-2427(91)90125-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Brien S.J., Wildt D.E., Goldman D., Merril C.R., Bush M. The cheetah is depauperate in genetic variation. Science. 1983;221:459–462. doi: 10.1126/science.221.4609.459. [DOI] [PubMed] [Google Scholar]
  22. O'Brien S.J., Roelke M.E., Marker L., Newman A., Winkler C.A., Metlzer D., Colly L., Evermann J.F., Bush M., Wildt D.E. Genetic basis for species vulnerability in the cheetah. Science. 1985;227:1428–1434. doi: 10.1126/science.2983425. [DOI] [PubMed] [Google Scholar]
  23. Pazderka F., Longenecker B.M., Law G.R.J., Stone H.A., Ruth R.F. Histocompatibility of chicken populations selected for resistance to Marek's disease. Immunogenetics. 1975;2:93–100. [Google Scholar]
  24. Pink J.R., Vainio O. Genetic control of the response of chicken T lymphocytes to concanavalin A: cellular localization of the low responder defect. Eur. J. Immunol. 1983;13:571–575. doi: 10.1002/eji.1830130711. [DOI] [PubMed] [Google Scholar]
  25. Reddy P.G., Blecha F., Minocha H.C., Anderson G.A., Morrill J.L., Fedorka-Cray P.J., Baker P.E. Bovine recombinant interleukin-2 augments immunity and resistance to bovine herpesvirus infection. Vet. Immunol. Immunopathol. 1989;23:61–74. doi: 10.1016/0165-2427(89)90110-4. [DOI] [PubMed] [Google Scholar]
  26. Rouse B.T., Babiuk L.A. Host defense mechanisms against infectious bovine rhinotracheitis virus: in vitro stimulation of sensitized lymphocytes by virus antigen. Infect. Immun. 1974;10:681–687. doi: 10.1128/iai.10.4.681-687.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scherba G., Hajjar A.M., Pernikoff D.S., Sundberg J.P., Basgall E.J., Leon-Monzon M., Nerurkar L., Reichmann M.E. Comparison of a cheetah herpesvirus isolate to feline herpesvirus 1. Arch. Virol. 1988;100:89–97. doi: 10.1007/BF01310910. [DOI] [PubMed] [Google Scholar]
  28. Smith K.A. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169–1176. doi: 10.1126/science.3131876. [DOI] [PubMed] [Google Scholar]
  29. Sood A.K., Pereira D., Weissman S.M. Vol. 78. 1981. Isolation and partial nucleotide sequence of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodexoynucleotide primer; pp. 616–620. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weinberg A., Merigan T.C. Recombinant interleukin 2 as an adjuvant for vaccine-induced protection. Immunization of guinea pigs with herpes simplex virus subunit vaccines. J. Immunol. 1988;140:294–299. [PubMed] [Google Scholar]
  31. Yuhki N., O'Brien S.J. Vol. 87. 1990. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history; pp. 836–840. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES