Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Mar 2;56(2):149–160. doi: 10.1016/0166-0934(95)01901-4

In situ hybridization technique for the detection of swine enteric and respiratory coronaviruses, transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV), in formalin-fixed paraffin-embedded tissues

Theerapol Sirinarumitr a, Prem S Paul b,, John P Kluge a, Patrick G Halbur c
PMCID: PMC7119765  PMID: 8882645

Abstract

The in situ hybridization (ISH) technique was developed to detect the swine coronaviruses, transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV), in cell culture and tissue sections from TGEV-or PRCV-infected pigs. The 35S-labeled RNA probes were generated from two plasmids pPSP.FP1 and pPSP.FP2 containing part of the S gene of TGEV. The procedure was first standardized in cell cultures. The radiolabeled pPSP.FP2 probe detected both TGEV and PRCV in virus-inoculated cell cultures, whereas pPSP.FP1 probe detected TGEV but not PRCV. The probe was then used to detect TGEV or PRCV in tissues of pigs experimentally infected with TGEV or PRCV or naturally infected with TGEV. Again, the probes detected TGEV in intestines of experimentally and naturally infected pigs and PRCV in the lungs of experimentally infected pigs. TGEV RNA was detected mainly within the enterocytes at the tips of villi and, less often, within some crypt epithelial cells. PRCV was shown to replicate mainly in the bronchiolar epithelial cells and in lesser amount in type II pneumocytes, type I pneumocytes, alveolar macrophages and bronchial epithelial cells, respectively. ISH has potential applications as a diagnostic test for the detection and differentiation of TGEV and PRCV in tissues and in studies to gain a better understanding of the mechanism of pathogenesis of enteric and respiratory coronavirus infections.

Keywords: Single stranded RNA probe, In situ hybridization, Transmissible gastroenteritis virus (TGEV), Porcine respiratory coronavirus (PRCV), Coronavirus

References

  1. Angerer L.M., Angerer R.C. In situ hybridization to cellular RNA with radiolabeled RNA probe. In: Wilkinson D.G., editor. In situ Hybridization: a Practical Approach. Oxford University Press; New York: 1992. pp. 15–32. [Google Scholar]
  2. Bohl E.H., Pensaert M.B. Transmissible gastroenteritis virus (classical enteric variant) and transmissible gastroenteritis virus (respiratory variant) In: Pensaert M.B., editor. Virus Infections of Porcines. Elsevier Science Publishers B.N; Amsterdam: 1989. pp. 139–265. [Google Scholar]
  3. Brahic M., Ozden S. Simultaneous detection of cellular RNA and protein. In: Wilkinson D.G., editor. In situ Hybridization: a Practical Approach. Oxford University Press; New York: 1992. pp. 85–104. [Google Scholar]
  4. Britton P., Mawditt K.L., Page K.W. The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Res. 1991;21:181–198. doi: 10.1016/0168-1702(91)90032-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britton P., Page K.W. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus. Virus Res. 1990;18:71–80. doi: 10.1016/0168-1702(90)90090-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox E., Hooybergh J., Pensaert M.B. Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res. Vet. Sci. 1990;48:165–169. doi: 10.1016/S0034-5288(18)30984-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chu R.M., Li N., Glock R.D., Ross R.F. Applications of peroxidase-antiperoxidase staining technique for detection of transmissible gastroenteritis virus in pigs. Am. J. Vet. Res. 1982;43:77–81. [PubMed] [Google Scholar]
  8. Delmas B., Gelfi J., L'Haridon R. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature. 1990;357:417–420. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frederick G.I., Bohl E.H., Cross J.E. Pathogenicity of an attenuated strain of transmissible gastroenteritis virus for newborn pigs. Am. J. Vet. Res. 1976;42:1163–1169. [PubMed] [Google Scholar]
  10. Gibson S.J., Polak J.M. Principles and applications of complementary RNA probes. In: Polak J.M., McGee J.O., editors. In situ Hybridization, Principles and Practice. Oxford University Press; New York: 1990. pp. 81–94. [Google Scholar]
  11. Halbur P.G., Paul P.S., Vaughn E.M., Andrews J.J. Experimental reproduction of pneumonia in gnoto-biotic pigs with porcine respiratory coronavirus isolate AR310. J. Vet. Diagn. Invest. 1993;5:184–188. doi: 10.1177/104063879300500207. [DOI] [PubMed] [Google Scholar]
  12. Hill H.T., Biwer J.D., Wood R.D., Wesley R.D. 1989. Porcine respiratory coronavirus isolated from two US swine herds; pp. 333–335. (Proc. Am. Assoc. Swine Pract.). [Google Scholar]
  13. Kohler C.R., Nelsen J.A. Technique for double-labelling virus infected cells. In: Oldstone M.B., editor. Animal Virus Pathogenesis, a Practical Approach. Oxford University Press; New York: 1990. pp. 67–86. [Google Scholar]
  14. Larochelle R., Mogar R. The application of immunogold silver staining (IGSS) for the detection of the transmissible gastroenteritis virus in fixed tissue. J. Vet. Diagn. Invest. 1993;5:16–20. doi: 10.1177/104063879300500105. [DOI] [PubMed] [Google Scholar]
  15. Larson D.J., Morehouse L.G., Solorzano R.F., Kinden D.A. Transmissible gastroenteritis in neonatal dogs: experimental intestinal infection with transmissible gas-troenteritis virus. Am. J. Vet. Res. 1979;40:477–487. [PubMed] [Google Scholar]
  16. Laude H., van Reeth K., Pensaert M. Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet. Res. 1993;24:125–150. [PubMed] [Google Scholar]
  17. Morin M., Morehouse L.G., Solorzano R.F., Olsen L.D. Transmissible gastroenteritis in feeder swine: clinical, immunofluorescence and histopathological observations. Can. J. Comp. Med. 1973;37:239–248. [PMC free article] [PubMed] [Google Scholar]
  18. O'Toole D., Brown I., Bridges A., Cartwright S.F. Pathogenicity of experimental infection with pneumotropic porcine respiratory coronavirus. Res. Vet. Sci. 1989;47:23–29. doi: 10.1016/S0034-5288(18)31226-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parker S.E., Gallagher T.M., Buchmeier M.J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989;173:664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paul P.S., Halbur P.G., Vaughn E.M. Significance of porcine respiratory coronavirus infection. Compend. Com. Educ. Pract. Vet. 1994;16:1223–1234. [Google Scholar]
  21. Paul P.S., Vaughn E.M., Halbur P.G. Vol. 12. 1992. Characterization and pathogenicity of a new porcine respiratory coronavirus strain AR310; p. 92. (Proc. Int. Pig. Vet. Soc. Congr.). [Google Scholar]
  22. Pensaert M., Callebaut P., Vergote J. Isolation of a porcine respiratory non-enteric coronavirus related to transmissible gastroenteritis. Vet. Quart. 1986;8:257–261. doi: 10.1080/01652176.1986.9694050. [DOI] [PubMed] [Google Scholar]
  23. Rassachaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
  24. Rassachaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
  25. Saif L.J., Wesley R.D. Transmissible gastroenteritis. In: Leman A.D., Strauss B.E., Mengeling W.L., D'Allaire S., Taylor D.J., editors. Diseases of Swine. 7th ed. Iowa State University Press; Ames, IA: 1992. pp. 362–386. [Google Scholar]
  26. Sanchez C.M., Gebauer F., Sune C., Mendez A., Dopazo J., Enjuanes L. Genetic evolution and tropism of transmissible gastroenteritis coronavirus. Virol. 1992;190:92–105. doi: 10.1016/0042-6822(92)91195-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shepherd R.W., Butler D.G., Cutz E., Gall D.G. The mucosal lesion in viral enteritis: extent and dynamics of the epithelial response to virus invasion in transmissible gastroenteritis of piglets. Gastroenterology. 1979;76:770–777. doi: 10.1016/S0016-5085(79)80177-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shockley L.J., Kapke P.A., Lapps W., Brain D.A., Potgieter L.D., Woods R.D. Diagnosis of porcine and bovine enteric coronavirus infections using cloned cDNA probes. J. Clin. Micro. 1987;25:1591–1596. doi: 10.1128/jcm.25.9.1591-1596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vaughn E.M., Halbur P.G., Paul P.S. Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes. J. Virol. 1995;69:3176–3184. doi: 10.1128/jvi.69.5.3176-3184.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vaughn E.M., Halbur P.G., Paul P.S. Three new isolates of porcine respiratory coronavirus with various pathogenicities and spike (S) gene deletions. J. Clin. Microbiol. 1994;32:1809–1812. doi: 10.1128/jcm.32.7.1809-1812.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vaughn E.M., Paul P.S. Antigenic and biological diversity among transmissible gastroenteritis virus isolates of swine. Vet. Microbiol. 1993;36:333–347. doi: 10.1016/0378-1135(93)90099-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weingartl H., Derbyshire J.B. Evidence for a putative second receptor for porcine transmissible gas-troenteritis virus on the villous enterocytes of newborn pigs. J. Virol. 1994;68:7253–7259. doi: 10.1128/jvi.68.11.7253-7259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weingartl H., Derbyshire J.B. Binding of porcine transmissible gastroenteritis virus by enterocytes from new-born and weaned piglets. Vet. Microbiol. 1993;35:223–232. doi: 10.1016/0378-1135(93)90113-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wesley R.D., Woods R.D., Hill H.T., Biwer J.D. Evidence for a respiratory coronavirus antigenically similar to transmissible gastroenteritis in the United States. J. Vet. Diagn. Invest. 1990;2:312–317. doi: 10.1177/104063879000200411. [DOI] [PubMed] [Google Scholar]
  35. Wesley R.D., Woods R.D., Cheung A.K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus. J. Virol. 1991;64:4761–4768. doi: 10.1128/jvi.64.10.4761-4766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wesley R.D., Wesley I.V., Woods R.D. Differentiation between transmissible gastroenteritis virus and porcine respiratory coronavirus using a cDNA probe. J. Vet. Diagn. Invest. 1991;3:29–32. doi: 10.1177/104063879100300106. [DOI] [PubMed] [Google Scholar]
  37. Wilcox J.N. Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 1993;41:1725–1733. doi: 10.1177/41.12.8245419. [DOI] [PubMed] [Google Scholar]
  38. Woods R.D., Cheville N.F., Gallagher J.E. Lesions in the small intestine of newborn pigs inoculated with porcine, feline and canine coronavirus. Am. J. Vet. Res. 1981;42:1163–1169. [PubMed] [Google Scholar]

Articles from Journal of Virological Methods are provided here courtesy of Elsevier

RESOURCES