Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Apr 4;54(1):1–13. doi: 10.1016/0166-0934(95)00020-U

Development and evaluation of an ELISA using recombinant fusion protein to detect the presence of host antibody to equine arteritis virus

ED Chirnside a,, PM Francis a, AAF De Vries b, R Sinclaira a, JA Mumford a
PMCID: PMC7119792  PMID: 7559853

Abstract

A recombinant glutathione-S-transferase fusion protein expressing amino acids 55–98 of equine arteritis virus (EAV) GL (rGL55–98) was tested in an ELISA for its ability to detect serum antibodies to EAV. Host antibodies induced following EAV infection bound the recombinant antigen by ELISA. The ELISA specificity and sensitivity were determined with a panel of equine sera including postinfection and postvaccination samples. A good correlation existed between EAV neutralizing antibody titers and ELISA absorbance values (r = 0.827). The sensitivity and specificity of the ELISA were 99.6 and 90.1%, respectively, compared with the EAV neutralization test and the recombinant antigen did not crossreact in ELISA with equine sera directed against other common equine respiratory viruses. Three post-EAV infection equine sera raised against different EAV isolates reacted strongly in the ELISA, as did two equine sera raised against EAV vaccines, indicating that the viral epitope was conserved between the viruses tested. Following vaccination with an inactivated whole virus vaccine, antibody detected with the recombinant antigen ELISA preceded the development of a virus-neutralizing response. The study demonstrates the potential application of rGL55–98 as a diagnostic antigen.

Keywords: Equine arteritis virus, Arterivirus, Recombinant protein, Enzyme-linked immunosorbent assay (ELISA), Equine antibody, Diagnosis

References

  1. Balasuriya U.B.R., Rossitto P.V., DeMaula C.D., Maclachlan N.J. A 29K envelope glycoprotein of equine arteritis virus expresses neutralisation determinants recognised by murine monoclonal antibodies. J. Gen. Virol. 1993;74:2525–2529. doi: 10.1099/0022-1317-74-11-2525. [DOI] [PubMed] [Google Scholar]
  2. Cavanagh D., Brien D.A., Brinton M., Enjuanes L., Holmes K.V., Horzinek M.C., Lai M.M.C., Laude H., Plagemann P.G.W., Siddell S. Revision of the taxonomy of the Coronavirus, Torovirus and Arterivirus genera. Arch. Virol. 1994;135:227–237. doi: 10.1007/BF01309782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chirnside E.D. Equine arteritis virus: an overview. Br. Vet. J. 1992;148:181–197. doi: 10.1016/0007-1935(92)90044-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirnside E.D., Wearing C.M., Binns M.M., Mumford J.A. Comparison of M and N gene sequences distinguishes variation amongst equine arteritis virus isolates. J. Gen. Virol. 1994;75:1491–1497. doi: 10.1099/0022-1317-75-6-1491. [DOI] [PubMed] [Google Scholar]
  5. Chirnside E.D., de Vries A.A.F., Mumford J.A., Rottier J.M. Equine arteritis virus neutralizing antibody in the horse is induced by a determinant on the large envelope glycoprotein GL. J. Gen. Virol. 1995 doi: 10.1099/0022-1317-76-8-1989. in press. [DOI] [PubMed] [Google Scholar]
  6. Conzelmann K.K., Visser N., van Woensel P., Thiel H.-J. Molecular characterisation of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology. 1993;193:329–339. doi: 10.1006/viro.1993.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook R.F., Gann S.J., Mumford J.A. The effects of vaccination with tissue culture-derived viral vaccines on detection of antibodies to equine arteritis virus by enzyme-linked immunosorbent assay (ELISA) Vet Microbiol. 1989;20:181–189. doi: 10.1016/0378-1135(89)90041-2. [DOI] [PubMed] [Google Scholar]
  8. de Vries A.A.F., Chirnside E.D., Bredenbeck P.J., Gravestein L.A., Horzinek M.C., Spaan W.J.M. All subgenomic RNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Res. 1990;18:3241–3247. doi: 10.1093/nar/18.11.3241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. de Vries A.A.F., Chirnside E.D., Horzinek M.C., Rottier P.J.M. The structural proteins of equine arteritis virus. J. Virol. 1992;66:6294–6303. doi: 10.1128/jvi.66.11.6294-6303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. den Boon J.A., Snijder E.J., Chirnside E.D., de Vries A.A.F., Horzinek M.C., Spaan W.J.M. Equine arteritis virus is not a togavirus but belongs to the coronavirus-like ‘superfamily’. J. Virol. 1991;65:2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deregt D., de Vries A.A.F., Raamsman M.J.B., Elmgren L.D., Rottier P.J.M. Monoclonal antibodies to equine arteritis virus proteins identify the GL protein as a target for virus neutralisation. J. Gen. Virol. 1994;75:2439–2444. doi: 10.1099/0022-1317-75-9-2439. [DOI] [PubMed] [Google Scholar]
  12. Doll E.R., Knappenberger R.E., Bryans J.T. An outbreak of abortion caused by the equine arteritis virus. Cornell Vet. 1957;47:69–75. [PubMed] [Google Scholar]
  13. Fukunaga Y., McCollum W.H. Complement fixation reactions in equine viral arteritis. Am. J. Vet. Res. 1977;38:2043–2946. [PubMed] [Google Scholar]
  14. Fukunaga Y., Wada R., Matsumura T., Sugiura T., Imagawa H. Induction of immune response and protection from equine viral arteritis (EVA) by formalin inactivated-virus vaccine for EVA in horses. J. Vet. Med. 1990;37:135–141. doi: 10.1111/j.1439-0450.1990.tb01036.x. [DOI] [PubMed] [Google Scholar]
  15. Fukunaga Y., Wada R., Matsumura T., Anzai T., Imagawa H., Sugiura T., Kumanomido T., Kanemaru T., Kamada M. An attempt to protect against persistent infection of equine viral arteritis in the reproductive tract of stallions using formalin inactivated-virus vaccine. In: Plowright W., Rossdale P.D., Wade J.F., editors. Proceedings of the VI International Congress on Equine Infectious Diseases; Cambridge, 1991; Newmarket: R&W Publications; 1992. pp. 239–244. [Google Scholar]
  16. Fukunaga Y., Matsumara T., Sugiura T., Wada R., Imagawa H., Kanemaru T., Kamada M. Use of the serum neutralisation test for equine viral arteritis with different virus strains. Vet. Rec. 1994;134:574–576. doi: 10.1136/vr.134.22.574. [DOI] [PubMed] [Google Scholar]
  17. Gerber H., Steck F., Hofer B., Walther L., Friedli U. Serological investigations on equine viral arteritis. Proceedings of the Fourth International Conference on Equine Infectious Diseases; Lyon, 1976; Veterinary Publications Inc; 1978. pp. 461–465. [Google Scholar]
  18. Godeny E.K., Chen L., Kumar N., Methven S.L., Koonin E.V., Brinton M.A. Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV) Virology. 1993;194:585–596. doi: 10.1006/viro.1993.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Golnik W., Michalska Z., Michalak T. Natural equine viral arteritis in foals. Schweiz. Arch. Tierheilkd. 1981;123:523–533. [PubMed] [Google Scholar]
  20. Karber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931;162:480–483. [Google Scholar]
  21. Kuo L., Chen Z., Rowland R.R.R., Faaberg K.S., Plagemann P.G.W. Lactate dehydrogenaseelevating virus (LDV): subgenomic mRNAs, mRNA leader and comparison of 3′-terminal sequences of two LDV isolates. Virus Res. 1992;23:55–72. doi: 10.1016/0168-1702(92)90067-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCollum W.H., Doll E.R., Wilson J.C. The recovery of virus from horses with experimental cases of equine arteritis using monolayer cell cultures of equine kidney. Am. J. Vet. Res. 1961;23:465–469. [Google Scholar]
  23. Mccollum W.H., Timoney P.J., Roberts A.W., Willard J.E., Carswell G.D. Responses of vaccinated and non-vaccinated mares to artificial insemination with semen from stallions persistently infected with equine arteritis virus. In: Powell D.G., editor. Proceedings of the Fifth International Conference on Equine Infectious Diseases; Lexington, 1991; Lexington: University Press of Kentucky; 1988. pp. 13–18. [Google Scholar]
  24. Meulenberg J.J.M., Hulst M.M., de Meijer E.J., Moonen P.L.J.M., van Besten A., de Kluyver E.P., Wensvoort G., Moorman R.J.M. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993;192:62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murphy T.W., Timoney P.J., Mccollum W.H. Analysis of genetic variation among strains of equine arteritis virus. In: Powell D.G., editor. Proceedings of the Fifth International Conference on Equine Infectious Disease; Lexington, 1987; Lexington: University Press of Kentucky; 1988. pp. 3–12. [Google Scholar]
  26. Murphy T.W., McCollum W.H., Timoney P.J., Klingeborn B.W., Hyllseth B., Golnik W., Erasmus B. Genomic variability among globally distributed isolates of equine arteritis virus. Vet. Microbiol. 1992;32:101–115. doi: 10.1016/0378-1135(92)90099-f. [DOI] [PubMed] [Google Scholar]
  27. Neu S.M., Timoney P.J., Mccollum W.H. Persistent infection of the reproductive tract of stallions persistently infected with equine arteritis virus. In: Powell D.G., editor. Proceedings of the Fifth International Conference on Equine Infectious Diseases; Lexington, 1987; Lexington: University Press of Kentucky; 1988. pp. 149–154. [Google Scholar]
  28. Paweska J.T., Barnard B.J.H. Serological evidence of equine arteritis virus in donkeys in South Africa. Onderstepoort J. Vet. Res. 1993;60:155–158. [PubMed] [Google Scholar]
  29. Plagemann P.G.W., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv. Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sambrook J., Fritsch E.F., Maniatis T. Cold Spring Harbour Laboratory Press; Cold Spring Harbour: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  31. Senne D.A., Pearson J.E., Carbrey E.A. Equine viral arteritis: a standard procedure for the virus neutralisation test and comparison of results of a proficiency test performed at five laboratories. Proceedingss of the 89th Annual Meeting of the United States Animal Health Association; Milwaukee, WI; 1985. pp. 29–34. [Google Scholar]
  32. Smith D.B., Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusion proteins with glutathione-S-transferase. Gene. 1988;67:31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  33. Snijder E.J., Horzinek M.C., Spaan W.J.M. The coronaviruslike superfamily. In: Laude H., Vautherot J.-F., editors. Coronaviruses, Molecular Biology and Virus-Host Interactions. Plenum press; New York: 1994. pp. 235–244. [Google Scholar]
  34. Timoney P.J., McCollum W.H., Roberts A.W., Murphy T.W. Demonstration of the carrier state in naturally acquired equine arteritis virus infection in the stallion. Res. Vet. Sci. 1986;41:279–280. [PubMed] [Google Scholar]
  35. Vaala W.E., Hamir A.N., Dubovi E.J., Timoney P.J., Ruiz B. Fatal, congenitally acquired infection with equine arteritis virus in a neonatal Thoroughbred. Equine Vet. J. 1992;24:155–158. doi: 10.1111/j.2042-3306.1992.tb02803.x. [DOI] [PubMed] [Google Scholar]
  36. Wood J.L.N., Chirnside E.D., Mumford J.A., Higgins A.J. The first recorded outbreak of equine viral arteritis virus in the United Kingdom. Vet. Rec. 1995;136:381–385. doi: 10.1136/vr.136.15.381. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virological Methods are provided here courtesy of Elsevier

RESOURCES