Abstract
Gnotobiotic calves given intramuscular injections of dexamethasone (DM, 0.5 mg kg−1 day−1) showed marked changes in haematological parameters including a neutrophilia and a lymphopaenia. Not only was there a reduction in the numbers of circulating mononuclear cells, but there was also a significant (P<0.01) decrease in the in vitro responsiveness of the remaining circulating peripheral blood lymphocytes to the mitogens, phytohaemagglutinin (PHA), concanavalin A (ConA) and poke-weed mitogen (PWM). Responses to all three mitogens were suppressed to a similar degree. Analysis of the circulating mononuclear cell sub-populations before and during DM treatment demonstrated a selective depletion of B cells; the T lymphocyte sub-population that expresses the gamma/delta form of T cell receptor, are CD2−, CD5+, CD8−, CD4− and constitute a major population in peripheral blood of calves.
In vitro studies in gnotobiotic and conventional calves confirmed that DM was highly inhibitory for PHA responses but, in contrast to the in vivo findings, showed little effect of DM on ConA responses. Expression of surface antigens after 72 h in vitro culture in the presence of DM were little affected with the exception of BoCD8 and MHC II, which showed increased and decreased expression, respectively. These observations would suggest that distinct mechanisms are involved in glucocorticosteroid suppression of the responses to these two mitogens.
References
- Baldwin C.L., Teale A.J., Naessens J.G., Goddeeris B.M., MacHugh N.D., Morrison W.I. Characterisation of a subset of bovine T lymphocytes that express BoT4 by monoclonal antibodies and function: Similarity to lymphocytes defined by human T4 and murine L3T4. J. Immunol. 1986;136:4385–4391. [PubMed] [Google Scholar]
- Baldwin C.L., MacHugh N.D., Ellis J.A., Naessens J., Newson J., Morrison W.I. Monoclonal antibodies which react with bovine T-lymphocyte antigens and induce blastogenesis: tissue distribution and functional characteristics of the target antigens. Immunology. 1988;63:439–446. [PMC free article] [PubMed] [Google Scholar]
- Bertoglio J.H., Leroux E. Differential effects of glucocorticoids on the proliferation of a murine helper and a cytolytic T cell clone in response to IL-2 and IL-4. J. Immunol. 1988;141:1191–1196. [PubMed] [Google Scholar]
- Bettens F., Kristensen F., Walker C., Schawulera U., Bonnard G.D., de Weck A.L. Lymphokine regulation of activated (G1) lymphocytes. II. Glucocorticoid and anti-Tac-induced inhibition of human T lymphocyte proliferation. J. Immunol. 1984;141:1191–1196. [PubMed] [Google Scholar]
- Claman H.N., Moorhead J.W., Benner W.H. Corticosteroids and lymphoid cells in vitro. I. Hydrocortisone lysis of human, guinea pig, and mouse thymus cells. J. Lab. Clin. Med. 1971;78:499–507. [PubMed] [Google Scholar]
- Clevers H., MacHugh N.D., Bensaid A., Dunlap S., Baldwin C.L., Kaushal A., Iams K., Howard C.J., Morrison W.I. Identification of a bovine surface antigen uniquely expressed on CD4−CD8− T cell receptor γ/δ lymphocytes. Eur. J. Immunol. 1990;20:809–817. doi: 10.1002/eji.1830200415. [DOI] [PubMed] [Google Scholar]
- Crouch C.F., Bielfeldt, Ohman H., Watts T.C., Babiuk L.A. Chronic shedding of bovine enteric coronavirus antigen-antibody complexes by clinically normal cows. J. Gen. Virol. 1985;66:1489–1500. doi: 10.1099/0022-1317-66-7-1489. [DOI] [PubMed] [Google Scholar]
- Culpepper J.A., Lee F. Regulation of IL 3 expression by glucocorticoids in cloned murine T lymphocytes. J. Immunol. 1985;135:3191–3197. [PubMed] [Google Scholar]
- Cupps T.R., Fauci A.S. Corticosteroid-mediated immunoregulation in man. Immunol. Rev. 1982;65:133–155. doi: 10.1111/j.1600-065x.1982.tb00431.x. [DOI] [PubMed] [Google Scholar]
- Davies D.H., Carmichael L.E. Role of cell-mediated immunity in the recovery of cattle from primary and recurrent infections with infectious bovine rhinotracheitis virus. Infect. Immun. 1973;8:510–518. doi: 10.1128/iai.8.4.510-518.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis W.C., Ellis J.A., MacHugh N.D., Baldwin C.L. Bovine pan T-cell monoclonal antibodies reactive with a molecule similar to CD2. Immunology. 1988;63:165–167. [PMC free article] [PubMed] [Google Scholar]
- Dennis M.J., Davies D.C., Hoare M.N. A simplified apparatus for the microbiological isolation of calves. Br. Vet. J. 1976;132:642–646. doi: 10.1016/s0007-1935(17)34542-6. [DOI] [PubMed] [Google Scholar]
- Duval D., Durant S., Homo-Delarche F. Non-genomic effects of steroids. Interactions of steroid molecules with membrane structures and function. Biochem. Biophys. Acta. 1983;737:409–442. doi: 10.1016/0304-4157(83)90008-4. [DOI] [PubMed] [Google Scholar]
- Ellis J.A., Baldwin C.L., MacHugh N.D., Bensaid A., Teale A.J., Goddeeris B.M., Morrison W.I. Characterisation by a monoclonal antibody and functional analysis of a subset of bovine T lymphocytes that express BoT8, a molecule analogous to human CD8. Immunology. 1986;58:351–358. [PMC free article] [PubMed] [Google Scholar]
- Ellis J.A., Davis W.C., MacHugh N.D., Emery D.L., Kaushal A., Morrison W.I. Differentiation antigens on bovine mononuclear phagocytes identified by monoclonal antibodies. Vet. Immunol. Immunopathol. 1988;19:325–340. doi: 10.1016/0165-2427(88)90118-3. [DOI] [PubMed] [Google Scholar]
- Gillis S., Crabtree G.R., Smith K.A. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J. Immunol. 1979;123:1624–1631. [PubMed] [Google Scholar]
- Hoare M.N., Davies D.C., Dennis M.J. The derivation of gnotobiotic calves by hysterotomy and slaughter technique. Br. Vet. J. 1976;132:369–373. doi: 10.1016/s0007-1935(17)34635-3. [DOI] [PubMed] [Google Scholar]
- Howard C.J., Morrison W.I. Proceedings of the First International Workshop on Leukocyte Antigens of Cattle, Sheep and Goats. Vol. 27. 1991. pp. 1–36. (Vet. Immunol. Immunopathol.). [PubMed] [Google Scholar]
- Howard C.J., Parsons K.R., Jones B.V., Sopp P., Pocock D.H. Two monoclonal antibodies (CC17, CC29) recognising an antigen (Bo5) on bovine T lymphocytes analogous to human CD5. Vet. Immunol. Immunopathol. 1988;19:127–139. doi: 10.1016/0165-2427(88)90004-9. [DOI] [PubMed] [Google Scholar]
- Howard C.J., Sopp P., Parsons K.R., Finch J. In vivo depletion of BoT4 (CD4) and of non-T4/T8 lymphocyte subsets in cattle with monoclonal antibodies. Eur. J. Immunol. 1989;19:757–764. doi: 10.1002/eji.1830190428. [DOI] [PubMed] [Google Scholar]
- Lee S.W., Tsou A.-P., Chan H., Thomas J., Petrie K., Eugui E.M., Allison A.C. Vol. 85. 1988. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA; pp. 1204–1208. (Proc. Natl. Acad. Sci.). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay C.R. Sheep leukocyte molecules: a review of their distribution, structure and possible function. Vet. Immunol. Immunopathol. 1988;19:1–20. doi: 10.1016/0165-2427(88)90042-6. [DOI] [PubMed] [Google Scholar]
- Muscoplat C.C., Shope R.E., Chen A.W., Johnson D.W. Effects of corticosteroids on responses of bovine peripheral blood lymphocytes cultured with phytohaemagglutinin. Am. J. Vet. Res. 1975;36:1243–1244. [PubMed] [Google Scholar]
- Naessens J., Newson J., MacHugh N., Howard C.J., Parsons K., Jones B. Characterization of a bovine leucocyte differentiation antigen of 145,000 MW restricted to B lymphocytes. Immunology. 1990;69:525–530. [PMC free article] [PubMed] [Google Scholar]
- O'Flynn K., Krensky A.M., Beverley P.C.L., Burakoff S.J., Linch D.C. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature. 1985;313:686–687. doi: 10.1038/313686a0. [DOI] [PubMed] [Google Scholar]
- Ojo-Amaize E.A., Guidry A.J., Paape M., Mayer H.K. In vitro depression of bovine lymphocyte function by treatment of cultured bovine lymphocytes with physiologic concentrations of hydrocortisone. Am. J. Vet. Res. 1988;49:851–855. [PubMed] [Google Scholar]
- Pruett J.H., Guillot F.S., Fisher W.F. Humoral and cellular immunoresponsiveness of stanchioned cattle infested with Psoroptes ovis. Vet. Parasitol. 1986;22:121–133. doi: 10.1016/0304-4017(86)90014-2. [DOI] [PubMed] [Google Scholar]
- Pruett J.H., Fisher W.F., Deloach J.R. Effects of dexamethasone on selected parameters of the bovine immune system. Vet. Res. Commun. 1987;11:305–323. doi: 10.1007/BF00346190. [DOI] [PubMed] [Google Scholar]
- Reed J.C., Abidi A.H., Alpers J.D., Hoover R.G., Robb R.J., Nowell P.C. Effect of cyclosporin A and dexamethasone on interleukin 2 receptor gene expression. J. Immunol. 1986;137:150–154. [PubMed] [Google Scholar]
- Roth J.A., Kaeberle M.L. Effect of glucocorticoids on the bovine immune system. J. Am. Vet. Med. Assoc. 1982;180:894–901. [PubMed] [Google Scholar]
- Roth J.A., Kaeberle M.L., Hubbard R.D. Attempts to use thiabendazole to improve the immune response in dexamethasone-treated or stressed cattle. Immunopharmacology. 1984;8:121–128. doi: 10.1016/0162-3109(84)90015-8. [DOI] [PubMed] [Google Scholar]
- Torbett B.E., Skidmore B., Clark W.R. Multiple pathways for antigen-independent activation of a T helper hybridoma. Eur. J. Immunol. 1986;16:933–938. doi: 10.1002/eji.1830160810. [DOI] [PubMed] [Google Scholar]
- Waage A., Bakke O. Glucocorticoids suppress the production of tumour necrosis factors by lipopolysaccharide-stimulated human monocytes. Immunology. 1988;63:299–302. [PMC free article] [PubMed] [Google Scholar]
- Wilkie B.N., Caoili F., Jacobs R. Bovine lymphocytes: erythrocyte rosettes in normal, lymphomatous and corticosteroid-treated cattle. Can. J. Comp. Med. 1979;43:22–28. [PMC free article] [PubMed] [Google Scholar]
- Yang W.C., Schultz R.D. Effect of corticosteroid on porcine leukocytes: age-related effects of corticosteroid inhibition on porcine lymphocyte responses to mitogens. Vet. Immunol. Immunopathol. 1986;13:19–29. doi: 10.1016/0165-2427(86)90045-0. [DOI] [PubMed] [Google Scholar]