Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Sep 17;64(1):71–81. doi: 10.1016/0165-5728(95)00156-5

Modulation of immune-associated surface markers and cytokine production by murine retinal glial cells

Kristen M Drescher a, Judith A Whittum-Hudson b,
PMCID: PMC7119802  PMID: 8598392

Abstract

Murine retinal glia are normally negative for major histocompatibility complex (MHC) Class II antigens and express low levels of MHC Class I and intercellular adhesion molecule-1 (ICAM-1) as detected by avidin-biotin-peroxidase immunohistochemistry. These surface molecules associated with immune function were either induced (Class II) or upregulated (Class I and ICAM-1) on cultured retinal glial cells in a dose- and time-dependent manner following exposure to recombinant Interferonγ (rIFN-γ). MHC Class I and II expression by passaged and primary cells was maximal (> 90% positive) after incubation with 100 U/ml of rlFN-y for 48 h. ICAM-1 expression by primary and passaged cells tripled between 48 and 72 h after exposure to 25 or 50 U/ml of rIFN-γ. By 72 h after exposure to 100 U/ml of rIFN-y, 62% of the retinal glia were positive for ICAM-1, whereas under normal culture conditions these molecules were detected on < 3% of the retinal glia. Bacterial lipopolysaccharide (LPS), a known stimulator of central nervous system (CMS) astrocytes, increased ICAM-1 expression only 3-fold to 9% of cells staining positively, but neither MHC Class I nor Class II expression was altered from baseline levels. Surface expression of ICAM-1, MHC Class I, and MHC Class II was unaffected by exposure to either rTNF-α (1000 U/ml) or rIL-6 (100 U/ml) for 24 h. Under normal culture conditions, intracellular interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected immunohistochemically. Exposure to either rIFN-γ or LPS induced more intense staining which correlated with increased secreted levels of both cytokines in culture supernatants. Levels of secreted TNF-α increased 6-fold after stimulation with LPS for 24 h, while secreted IL-6 increased over 9-fold. These results support the hypothesis that retinal glia may participate in intraretinal immune processes following stimulation during inflammatory and infectious processes via either cell surface- or soluble mediator-dependent mechanisms or a combination of both.

Keywords: Müller cells, Retina, Glia, Intercellular adhesion molecule-1, Interferon- y, Major histocompatibility complex antigens, Cytokines, Mouse, Interleukin-6, Tumor necrosis factor-α

References

  1. Barres B.A. New roles for glia. J. Neurosci. 1991;11:3685–3694. doi: 10.1523/JNEUROSCI.11-12-03685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benveniste E.N., Sparacio S.M., Bethea J.R. Tumor necrosis factor-or enhances interferon-y mediated class II antigen expression on astrocytes. J. Neuroimmunol. 1993;25:209–219. doi: 10.1016/0165-5728(89)90139-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berzofsky J., Berkower I. Immunogenicity and antigen structure. In: Paul W.E., editor. Fundamental Immunology. Raven Press; New York, NY: 1989. pp. 169–208. [Google Scholar]
  4. Bignami A., Dahl D. The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the GFAP. Exp. Eye Res. 1979;28:63–69. doi: 10.1016/0014-4835(79)90106-4. [DOI] [PubMed] [Google Scholar]
  5. Brodsky F.M, Guagliardi L.E. The cell biology of antigen processing and presentation. Annu. Rev. Immunol. 1991;9:707–744. doi: 10.1146/annurev.iy.09.040191.003423. [DOI] [PubMed] [Google Scholar]
  6. Cannella B., Raine C.S. Cytokines upregulate la expression in organotypic cultures of central nervous system tissue. J. Neuroimmunol. 1989;24:239–248. doi: 10.1016/0165-5728(89)90122-7. [DOI] [PubMed] [Google Scholar]
  7. Caspi R.R., Roberge F.G., Nussenblatt R.B. Organ-resident, nonlymphoid cells suppress proliferation of autoimmune T-helper cells. Science. 1987;237:1029–1032. doi: 10.1126/science.2956685. [DOI] [PubMed] [Google Scholar]
  8. Cepko C.L. A model for retinal fate determination. In: Albert D.M., Jacobiec F.A., editors. Principles and Practice of Ophthalmology: Basic Sciences. W.B. Saunders; Boston, MA: 1995. pp. 533–542. [Google Scholar]
  9. Chang C.H., Fume M., Tamaki K. Selective regulation of ICAM-1 and major histocompatibility complex class I and class II molecule expression on epidermal Langerhans cells by some of the cytokines released by keratinocytes and T cells. Eur.J. Immunol. 1994;24:2889–2895. doi: 10.1002/eji.1830241146. [DOI] [PubMed] [Google Scholar]
  10. De Vos A.F., Hoekzema R., Kijlstra A. Cytokines and uveitis, a review. Curr. Eye Res. 1992;11:581–597. doi: 10.3109/02713689209001814. [DOI] [PubMed] [Google Scholar]
  11. Ekstrom P., Sanyal S., Narfstrom K., Chader G.J., van Veen T. Accumulation of glial fibrillary acidic protein in Müller radial glia during retinal degeneration. Invest. Optimal. Vis. Sci. 1988;29:1363–1371. [PubMed] [Google Scholar]
  12. Eng L.F. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 1985;8:203–214. doi: 10.1016/s0165-5728(85)80063-1. [DOI] [PubMed] [Google Scholar]
  13. Erickson P.A., Fisher S.K., Guerin C.J., Anderson B.H., Kaska D.D. Glial acidic fibrillary protein increases in Müller cells after retinal detachment. Exp. Eye Res. 1987;44:37–46. doi: 10.1016/s0014-4835(87)80023-4. [DOI] [PubMed] [Google Scholar]
  14. Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen presenting cells.I. Induction of la expression on astrocytes by T cells via immune Interferon and its effect on antigen presentation. J. Immunol. 1985;234:3785–3793. [PubMed] [Google Scholar]
  15. Frohman E.M., Frohman T.C., Dustin M.L., Vayuvegula B., Choi B., Gupta A., van den Noort S., Gupta S. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin and interleukin-1: relevance to intracerebral antigen presentation. J. Neuroimmunol. 1989;23:117–124. doi: 10.1016/0165-5728(89)90030-1. [DOI] [PubMed] [Google Scholar]
  16. Frohman E.M., van den Noort S., Gupta S. Astrocytes and the intracerebral immune response. J. Clin. Immunol. 1989;9:1–9. doi: 10.1007/BF00917121. [DOI] [PubMed] [Google Scholar]
  17. Geiger K., Howes E., Gallina M., Huang X.J., Travis G.H., Sarvetnick N. Transgenic mice expressing IFN-γ in the retina develop inflammation of the eye and photoreceptor loss. Invest. Ophthal. Vis. Sci. 1994;35:2667–2681. [PubMed] [Google Scholar]
  18. Geissler D., Gaggl S., Most J., Greil R., Herold M., Dierich M. A monoclonal antibody directed against the human intercellular adhesion molecule (ICAM-1) modulates the release of tumor necrosis factor-α, interferon-γ and interleukin-1. Eur. J. Immunol. 1990;20:2591–2596. doi: 10.1002/eji.1830201210. [DOI] [PubMed] [Google Scholar]
  19. Genis P., Jett M., Bernton E.W., Boyle T., Gelbard H.A., Dzenko K., Keane R.W., Resnick L., Mizrachi Y., Volsky D.J., Epstein L.G., Gendelman H.E. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV) -infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J. Exp. Med. 1992;176:1703–1718. doi: 10.1084/jem.176.6.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greenwood J. The blood-retinal barrier in experimental autoimmune uveoretinitis (EAU): a review. Curr. Eye Res. 1992;11:25–32. doi: 10.3109/02713689208999508. [DOI] [PubMed] [Google Scholar]
  21. Haegel H., Tolg C, Hofmann M., Ceredig R. Activated mouse astrocytes and T cells express similar CD44 variants. Role of CD44 in astrocyte/T cell binding. J. Cell Biol. 1993;122:1067–1077. doi: 10.1083/jcb.122.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988;239:290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  23. Hickey W.F., Hsu B.L., Kimura H. T lymphocyte entry into the central nervous system. J. Neurosci. Res. 1991;28:254. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  24. Hirsch M.R., Wietzerbin J., Pierres M., Gordis C. Expression of la antigens by cultured astrocytes treated with gamma-interferon. Neurosci. Lett. 1983;41:199–204. doi: 10.1016/0304-3940(83)90247-1. [DOI] [PubMed] [Google Scholar]
  25. Huxlin K.R., Sefton A.J., Furby J.H. The origin and development of retinal astrocytes in the mouse. J. Neurocytol. 1992;21:530–544. doi: 10.1007/BF01186955. [DOI] [PubMed] [Google Scholar]
  26. LaVail M.M., Unoki K., Yasumura D., Matthes M.T., Yancopoulos G.D., Steinberg R.H. Vol. 89. 1992. Multiple growth factors, cytokines and neurotrophins rescue photoreceptors from the damaging effects of constant light; pp. 11249–11253. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lavi E., Suzumura A., Murasko D.M., Murray E.M., Silberberg D.H., Weiss S.R. Tumor necrosis factor induces expression of Class I antigens on mouse astrocytes. J. Neuroimmunol. 1988;18:245–253. doi: 10.1016/0165-5728(88)90102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Linden R., Cavalcante L.A., Barradas P.C. Mononuclear phagocytes in the retina of developing rats. Histochemistry. 1986;85:335–339. doi: 10.1007/BF00493486. [DOI] [PubMed] [Google Scholar]
  29. Ling T., Stone J. The development of astrocytes in the cat retina: evidence of migration from the optic nerve. Dev. Brain Res. 1988;44:73–85. doi: 10.1016/0165-3806(88)90119-8. [DOI] [PubMed] [Google Scholar]
  30. Linke A.T., Male D.K. Strain-specific variation in constitutive and inducible expression of MHC class II, class I and ICAM-1 on rat brain endothelium. Immunology. 1994;82:88–94. [PMC free article] [PubMed] [Google Scholar]
  31. Liu Y., King N., Kesson A., Blanden R.V., Mullbacher A. Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. J. Neuroimmunol. 1989;21:157–168. doi: 10.1016/0165-5728(89)90171-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lopez C. Genetics of natural resistance to herpesvirus infections in mice. Nature. 1975;258:152–153. doi: 10.1038/258152a0. [DOI] [PubMed] [Google Scholar]
  33. Mano T., Tokuda N., Puro D.G. Interferon-gamma induces the expression of major histocompatibility antigens by human retinal glial cells. Exp. Eye Res. 1991;53:603–607. doi: 10.1016/0014-4835(91)90219-5. [DOI] [PubMed] [Google Scholar]
  34. Massa P.T., Schimpl A., Wecker E., ter Meulen V. Vol. 84. 1987. TNF amplifies measles virus-mediated la induction on astrocytes; p. 7242. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McLeod D.S., Lefer D.J., Merges C., Lutty G.A. Enhanced expression of intercellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am.J. Pathol. 1995 in press. [PMC free article] [PubMed] [Google Scholar]
  36. Merges M.J., Whittum-Hudson J.A. in vitro susceptibility of murine retinal cells to herpes simplex virus Type 1. Invest. Ophthal. Vis. Sci. 1990;31:1223–1230. [PubMed] [Google Scholar]
  37. Merrill J.E., Jonakait G.M. Interactions of the nervous and immune systems in development, normal brain homeostasis and disease. FASEB J. 1995;9:611–618. doi: 10.1096/fasebj.9.8.7768352. [DOI] [PubMed] [Google Scholar]
  38. Mucke L., Eddleston M. Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J. 1993;7:1226–1232. doi: 10.1096/fasebj.7.13.8405808. [DOI] [PubMed] [Google Scholar]
  39. Pepose J.S., Whittum-Hudson J.A. An immunogenetic analysis of resistance to herpes simplex virus retinitis in inbred strains of mice. Invest. Ophthal. Vis. Sci. 1987;28:1549–1552. [PubMed] [Google Scholar]
  40. Politi L., Lehar M., Adler R. Development of neonatal mouse retinal neurons and photoreceptors in low density cell culture. Invest. Ophthal. Vis. Sci. 1988;29:534–543. [PubMed] [Google Scholar]
  41. Prendergast R.A., Coskuncan N.M., McLeod D.S., Lutty G.A., Caspi R.R. T cell traffic and the pathogenesis of experimental autoimmune uveoretinitis. In: Nussenblatt R.B., Whitcup S.M., Caspi R.R., Gery I., editors. Advances in Ocular Immunology. Elsevier; Amsterdam: 1994. pp. 59–62. [Google Scholar]
  42. Ripps H., Witkovsky P. Neuron-glia interaction in the brain and retina. Prog. Retina Res. 1985;4:181–219. [Google Scholar]
  43. Roberge F.G., Caspi R.R., Nussenblatt R.B. Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. Antigen presentation manifested after removal of suppressive activity. J. Immunol. 1988;140:2193–2196. [PubMed] [Google Scholar]
  44. Sarthy P.V., Fu M. Transcriptional activation of an intermediate filament protein gene in mice with retinal dystrophy. DNA. 1989;8:437–446. doi: 10.1089/dna.1.1989.8.437. [DOI] [PubMed] [Google Scholar]
  45. Satoh J., Kastrukoff L.F., Kirn S.U. Cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes. J. Neuropathol. Exp. Neurol. 1991;50:215–226. doi: 10.1097/00005072-199105000-00004. [DOI] [PubMed] [Google Scholar]
  46. Selmaj K., Shafit-Zagardo B., Aquino D.A., Farooq M., Raine C.S., Norton W.T., Brosnan C.F. Tumor necrosis factor-induced proliferation of astrocytes from mature brain is associated with down-regulation of glial fibrillary acidic protein mRNA. J. Neurochem. 1991;57:823–830. doi: 10.1111/j.1471-4159.1991.tb08225.x. [DOI] [PubMed] [Google Scholar]
  47. Shaw G., Weber K. The structure and development of the rat retina: an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins. Eur.J. Cell Biol. 1983;30:219–232. [PubMed] [Google Scholar]
  48. Simmons D., Makgoba M.W., Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature. 1988;331:624–627. doi: 10.1038/331624a0. [DOI] [PubMed] [Google Scholar]
  49. Smith G.M., Jacobberger J.W., Miller R.H. Modulation of adhesion molecule expression on rat cortical astrocytes during maturation. J. Neurochem. 1993;60:1453–1466. doi: 10.1111/j.1471-4159.1993.tb03308.x. [DOI] [PubMed] [Google Scholar]
  50. Smith M.E., McFarlin D.E., Dhib-Jalbut S. Differential effect of interleukin-1/3 on la expression in astrocytes and microglia. J. Neuroimmunol. 1993;46:97–104. doi: 10.1016/0165-5728(93)90238-t. [DOI] [PubMed] [Google Scholar]
  51. Smith C.A., Grimes E.A., McCarthy N.J., Williams G.T. Multiple gene regulation of apoptosis: significance in immunology and oncology. In: Tomei L.D., Cope P.O., editors. Apoptosis II: The Molecular Basis of Apoptosis in Disease. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1994. pp. 43–87. [Google Scholar]
  52. Springer T.A. Adhesion receptors of the immune system. Nature. 1990;346:425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  53. Sun D. Enhanced IFN-gamma induced la-antigen expression by glial cells after previous exposure to this cytokine. J. Neuroimmunol. 1991;34:205. doi: 10.1016/0165-5728(91)90131-p. [DOI] [PubMed] [Google Scholar]
  54. Traugott U., Raine C.S. Multiple sclerosis: evidence for antigen presentation in situ by astrocytes. J. Neurol. Sci. 1985;59:365. doi: 10.1016/0022-510x(85)90147-9. [DOI] [PubMed] [Google Scholar]
  55. Vidovic M., Sparacio S.M., Elovitz M., Benveniste E.N. Induction and regulation of Class II MHC complex mRNA expression in astrocytes by interferon-γ and tumor necrosis factor-α. J. Neuroimmunol. 1990;30:189–200. doi: 10.1016/0165-5728(90)90103-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Whitcup S.M., Chan C.C., Li Q., Nussenblatt R.B. Expression of cell adhesion molecules in posterior uveitis. Arch. Ophthalmol. 1992;110:662–666. doi: 10.1001/archopht.1992.01080170084029. [DOI] [PubMed] [Google Scholar]
  57. Whitcup S.M., DeBarge L.R., Rosen H., Nussenblatt R.B., Chan C. Monoclonal antibody against CD lib/CD 18 inhibits endotoxin-induced uveitis. Invest. Ophthal. Vis. Sci. 1993;34:673–681. [PubMed] [Google Scholar]
  58. Whittum-Hudson J.A. HSV-induced stimulation of retinal Müller cells in vivo. Invest. Ophthalmol. Vis. Sci. (Suppl.) 1992;33:786. [Google Scholar]
  59. Whittum-Hudson J.A., Pepose J.S. Immunologie modulation of virus-induced pathology in a murine model of acute herpetic retinal necrosis. Invest. Ophthal. Vis. Sci. 1987;28:1541–1548. [PubMed] [Google Scholar]
  60. Wietzerbin J., Gaudelet C., Catinot L., Chebath J., Falcoff R. Synergistic effect of interferon-gamma and tumor necrosis factor-or on antiviral activity and (2′–5′) oligo (A) synthetase induction in a myelomonocytic cell line. J. Leuk. Biol. 1990;48:149–155. doi: 10.1002/jlb.48.2.149. [DOI] [PubMed] [Google Scholar]
  61. Wong G.H.W., Bartlett P.P., dark-Lewis S., Battye F., Schrader J.W. Inducible expression of H-2 and la antigen on brain cells. Nature. 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  62. Wong G.H.W., Bartlett P.P., dark-Lewis I., Battye F., Schrader J.W. TNFs α and β inhibit virus replication and synergize with interferons. Nature. 1986;323:819–820. doi: 10.1038/323819a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES