Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;37(2):113–122. doi: 10.1016/0165-2427(93)90059-D

Age-related increase of porcine natural interferon α producing cell frequency and of interferon yield per cell

W Nowacki a, Britta Cederblad b, Christine Renard c, C La Bonnardière a, B Charley a,
PMCID: PMC7119810  PMID: 8236791

Abstract

Porcine blood mononuclear cells (PBMC) were shown to secrete interferon α (IFN-α) after induction by a coronavirus, the transmissible gastroenteritis virus (TGEV). IFN-α producing cells, referred to as natural interferon α producing (NIP) cells, were detected by an ELISPOT assay using anti-porcine IFN-α monoclonal antibodies. The frequency of NIP cells among blood cells is low, at most 40–110 per 105 PBMC and each NIP cell was found to produce several units of IFN. We have shown that NIP cell frequency and IFN yield per cell gradually increased with the age of the donor animals, from the neonatal period to the adult age, with a significant increase around puberty. Our present results also indicate that NIP cells may be influenced by physiological and genetic factors; thus (1) NIP cell frequency and IFN yield per cell were decreased during lactation; (2) Chinese (Meishan) pigs were found to have higher NIP cell frequency and IFN yield per cell than European (Large White) animals.

Abbreviations: FCS, fetal calf serum; HSV, herpes simplex virus; LW, Large White; MS, Chinese Meishan; NIP, natural interferon α producing; PBMC, porcine blood mononuclear cells; TGEV, transmissible gastroenteritis virus

References

  1. Artursson K., Wallgren P., Alm G.V. Appearance of interferon-α in serum and signs of reduced immune function in pigs after transport and installation in a fattening farm. Vet. Immunol. Immunopathol. 1989;23:345–353. doi: 10.1016/0165-2427(89)90146-3. [DOI] [PubMed] [Google Scholar]
  2. Blecha F., Charley B. Rationale for using immunopotentiators in domestic food animals. In: Blecha F., Charley B., editors. Immunomodulation in Domestic Food Animals. Vol. 35. Academic Press; San Diego: 1990. pp. 3–19. (Adv. Vet. Comp. Med.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capobianchi M.R., Facchini J., Di Marco P., Antonelli G., Dianzani F. Vol. 178. 1985. Induction of alpha interferon by membrane interaction between viral surface and peripheral blood mononuclear cells; pp. 551–556. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  4. Cederblad B., Alm G.V. Infrequent but efficient interferon-α-producing human mononuclear leukocytes induced by Herpes Simplex Virus in vitro studied by immuno-plaque and limiting dilution assays. J. Interferon Res. 1990;10:65–73. doi: 10.1089/jir.1990.10.65. [DOI] [PubMed] [Google Scholar]
  5. Cederblad B., Riesenfeld T., Alm G.V. Deficient herpes simplex virus-induced interferon-α production by blood leukocytes of preterm and term newborn infants. Pediatric Res. 1990;27(1):7–10. doi: 10.1203/00006450-199001000-00002. [DOI] [PubMed] [Google Scholar]
  6. Charley B., Lavenant L., Delmas B. Glycosylation is required for coronavirus TGEV to induce an efficient production of IFN-α by blood mononuclear cells. Scand. J. Immunol. 1991;33:435–440. doi: 10.1111/j.1365-3083.1991.tb01792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: Role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charley B., Lavenant L. Characterization of blood mononuclear cells producing IFN-α following induction by coronavirus-infected cells (Porcine Transmissible Gastroenteritis Virus) Res. Immunol. 1990;141:141–151. doi: 10.1016/0923-2494(90)90133-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Maeyer E., De Maeyer-Guignard J., editors. Interferon and other related cytokines. Wiley; New York: 1988. pp. 364–379. [Google Scholar]
  10. Feldman M., Fitzgerald-Bocarsly P. Sequential enrichment and immunocytochemical visualization of human interferon α producing cells. J. Interferon Res. 1990;10:435–446. doi: 10.1089/jir.1990.10.435. [DOI] [PubMed] [Google Scholar]
  11. Howell D.M., Feldman S., Kloser P., Fitzgerald-Bocarsly P. Comparison of frequency of interferon producing cells in healthy donors and AIDS patients using Elisaspot and limiting dilution. J. Interferon Res. 1991;11:S103. Abstract. [Google Scholar]
  12. L'Haridon R., Bourget P., Lefèvre F., La Bonnardière C. Production of an hybridoma library to recombinant porcine alpha I interferon: a very sensitive assay (ISBBA) allows the detection of a large number of clones. Hybridoma. 1991;10:35–47. doi: 10.1089/hyb.1991.10.35. [DOI] [PubMed] [Google Scholar]
  13. La Bonnardière C., Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect. Immun. 1981;32:28–31. doi: 10.1128/iai.32.1.28-31.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laude H., Gelfi J., Lavenant L., Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by coronavirus TGEV. J. Virol. 1992;66:743–749. doi: 10.1128/jvi.66.2.743-749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lebon P. Inhibition of Herpes Simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol. 1985;66:2781–2786. doi: 10.1099/0022-1317-66-12-2781. [DOI] [PubMed] [Google Scholar]
  16. Lefèvre F., L'Haridon R., Borras-Cuesta F., La Bonnardière C. Production, purification and biological properties of an Escherichia coli-derived recombinant porcine alpha interferon. J. Gen. Virol. 1990;71:1057–1063. doi: 10.1099/0022-1317-71-5-1057. [DOI] [PubMed] [Google Scholar]
  17. Legault C., Caritez J.C. L'expérimentation sur le porc chinois en France. I. Performances de reproduction en race pure et en croisement. Génét. Sél. Evol. 1983;15(2):225–240. doi: 10.1186/1297-9686-15-2-225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lloyd S. Effect of pregnancy and lactation upon infection. Vet. Immunol. Immunopathol. 1983;4:153–176. doi: 10.1016/0165-2427(83)90057-0. [DOI] [PubMed] [Google Scholar]
  19. Ronnblom L., Ramstedt U., Alm G.V. Properties of human natural interferon-producing cells stimulated by tumor cell lines. Eur. J. Immunol. 1983;13:471–476. doi: 10.1002/eji.1830130608. [DOI] [PubMed] [Google Scholar]
  20. Ronnblom L., Cederblad B., Sandberg K., Alm G.V. Determination of herpes simplex virus-induced alpha interferon-secreting human blood leucocytes by a filter immunoplaque assay. Scand. J. Immunol. 1988;27:165–170. doi: 10.1111/j.1365-3083.1988.tb02335.x. [DOI] [PubMed] [Google Scholar]
  21. Sandberg K., Gobl A.E., Funa K., Alm G.V. Characterization of the blood mononuclear leucocytes producing alpha interferon after stimulation with herpes simplex virus in vitro, by means of combined immunohistochemical staining and in situ RNA-RNA hybridization. Scand. J. Immunol. 1989;29:651–658. doi: 10.1111/j.1365-3083.1989.tb01169.x. [DOI] [PubMed] [Google Scholar]
  22. Sandberg K., Matsson P., Alm G.V. A distinct population of nonphagocytic and low level CD4+ null lymphocytes produce IFN-α after stimulation by Herpes Simplex Virus-infected cells. J. Immunol. 1990;145:1015–1020. [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES