Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Mar 10;45(3):265–284. doi: 10.1016/0165-2427(94)05343-Q

Enumeration of isotype-specific antibody-secreting cells derived from gnotobiotic piglets inoculated with porcine rotaviruses

Wei-Kang Chen 1,1, Thomas Campbell 1,2, John VanCott 1,3, Linda J Saif 1,
PMCID: PMC7119826  PMID: 7676610

Abstract

In order to evaluate mucosal antibody responses to rotavirus, an enzyme-linked immunospot (ELISPOT) assay was adapted to enumerate antibody-secreting cells (ASC) in the mesenteric lymph nodes (MLN), lamina propria (LP) of the small intestine and spleens of gnotobiotic pigs orally inoculated with porcine rotaviruses (SB1A and Gottfried). Rotavirus-specific IgM ASC occurred by post-inoculation day (PID) 3, and numbers peaked in spleen and MLN tissues by PID 7 and in intestinal LP by PID 7–14. Numbers of rotavirus specific IgA and IgG ASC in these tissues peaked at PID 14–21. Rotavirus specific IgA ASC were predominant in the gut and IgA to IgG rotavirus specific ASC ratios were highest for all rotavirus antigen coatings in the gut LP. However, the relative ratios of specific IgA to IgG ASC were lower (ratios of 5 to 7) against combined structural and nonstructural viral antigens (rotavirus-infected fixed cell ELISPOT plates) than ratios (13 to 46) against only viral structural antigens (rotavirus-coated ELISPOT plates), indicating that there were proportionately more specific IgG ASC to the nonstructural viral antigens in the LP, the tissue adjacent to the site of rotavirus replication in the intestine. In the node cells (spleen and MLN) rotavirus-specific IgA to IgG ASC ratios were lowest and against the various ELISPOT rotavirus coatings ranged from 0.7 to 4. Gnotobiotic piglets inoculated at different ages with porcine rotaviruses generally showed similar specific immunoglobulin (Ig) ASC responses to rotavirus infection, along with similar diarrhea and virus shedding patterns in the different age groups. However, the numbers of specific IgA ASC in the MLN of 3–4 week old pigs were higher than those of 3–5 day old pigs. Although challenge of SB1A or Gottfried rotavirus-inoculated pigs with SB1A (G4P7) or Gottfried (G4P6) rotavirus revealed a high degree of protection from diarrhea and virus shedding, greater numbers of specific IgM ASC were observed in spleen after challenge of SB1A-inoculated pigs with Gottfried rotavirus (same G type, distinct P type). Thus, by using the ELISPOT technique, we successfully measured intestinal mucosal antibody-related responses to rotavirus in gnotobiotic pigs. Moreover, our results support the use of gnotobiotic piglets as an animal model to evaluate active antibody responses and protection against rotavirus infection and disease.

References

  1. Barnett B. Viral gastroenteritis. Med. Clin. North Am. 1983;67:1031–1058. doi: 10.1016/S0025-7125(16)31165-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bohl E.H., Theil K.W., Saif L.J. Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses. J. Clin. Microbiol. 1984;19:105–111. doi: 10.1128/jcm.19.2.105-111.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chanock R.M., Murphy B.R., Collins P.L., Coeligh K.V., Olmsled R.A., Snyder M.H., Spriggs M.K., Prine G.A., Moss B., Flores J., Gorziglia M.G., Kapikian A.Z. Live viral vaccines for respiratory and enteric tract diseases. Vaccine. 1988;6:129–133. doi: 10.1016/s0264-410x(88)80014-8. [DOI] [PubMed] [Google Scholar]
  4. Conner M.E., Gilger M.A., Estes M.K., Graham D.Y. Serologic and mucosal immune response to rotavirus infection in the rabbit model. J. Virol. 1991;65:2562–2571. doi: 10.1128/jvi.65.5.2562-2571.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cukor G., Blacklow N.R. Human viral gastroenteritis. Microbiol. Rev. 1984;48:157–179. doi: 10.1128/mr.48.2.157-179.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Czerkinsky C.C., Nilsson L.A., Ouchterlony O., Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods. 1983;65:109–121. doi: 10.1016/0022-1759(83)90308-3. [DOI] [PubMed] [Google Scholar]
  7. Dharakul T., Riepenhoff-Talty M., Albini B., Ogra P. Distribution of rotavirus antigen in intestinal lymphoid tissues: potential role in development of the mucosal response to rotavirus. Clin. Exp. Immunol. 1988;74:14–19. [PMC free article] [PubMed] [Google Scholar]
  8. Estes M.K., Cohen J. Rotavirus gene structure and function. Microbiol. Rev. 1989;53:410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grimwood K., Lund J.C.S., Coulson B.S., Hudson I.L., Bishop R.F., Barnes G.L. Comparison of serum and mucosal antibody responses following severe acute rotavirus gastroenteritis in young children. J. Clin. Microbiol. 1988;26:732–738. doi: 10.1128/jcm.26.4.732-738.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heckert R.A., Saif L.J., Hoblet K.H., Agnes A.G. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio. Vet. Microbiol. 1990;22:187–201. doi: 10.1016/0378-1135(90)90106-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoblet K.H., Saif L.J., Kohler E.M., Theil K.W., Bech-Nielsen S., Stitzlein G.A. Efficacy of an orally administered modified-live porcine-origin rotavirus vaccine against post weaning diarrhea in pigs. Am. J. Vet. Res. 1986;47:1697–1703. [PubMed] [Google Scholar]
  12. Hoshino Y., Saif L.J., Soreno M.M., Chanock R.M., Kapikian A.Z. Infection immunity of piglets to either VP3 or VP7 outer capsid protein confers resistance to challenge with a virulent rotavirus bearing the corresponding antigen. J. Virol. 1988;62:744–748. doi: 10.1128/jvi.62.3.744-748.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ichimiya I., Kawauchi H., Fujiyoshi T., Tanaka T., Mogi G. Distribution of immunocompetent cells in normal nasal mucosa: comparisons among germ-free, specific pathogen-free, and conventional mice. Ann. Otology, Rhinol. Laryngol. 1991;100:638–642. doi: 10.1177/000348949110000807. [DOI] [PubMed] [Google Scholar]
  14. Ijzas M.K., Attah-Poku S.K., Redmond M.J., Parker M.D., Sabik M.I. Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. J. Virol. 1991;65:3106–3113. doi: 10.1128/jvi.65.6.3106-3113.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jiang B.M., Saif L.J., Kim J.H. Biochemical characterization of the structural and non-structural polypeptides of a porcine group C rotavirus. J. Virol. 1990;64:3171–3178. doi: 10.1128/jvi.64.7.3171-3178.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaila M., Isolauri E., Virtanen E., Arvilommi H. Preponderance of IgM from blood lymphocytes in response to infantile rotavirus gastroenteritis. Gut. 1992;33:639–642. doi: 10.1136/gut.33.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kang S-Y., Saif L.J., Miller K.L. Reactivity of VP4-specific monoclonal antibodies to a serotype 4 porcine rotavirus with distinct serotypes of human (symptomatic and asymptomatic) and animal rotaviruses. J. Clin. Microbiol. 1989;27:2744–2750. doi: 10.1128/jcm.27.12.2744-2750.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kapikian A.Z., Chanock R.M. Rotaviruses. In: Fields B.N., Knipe D.M., editors. Virology. 2nd edn. Raven Press; New York: 1990. pp. 1353–1403. [Google Scholar]
  19. Kapikian A.Z., Flores J., Hoshino Y., Glass R.I., Midthum K., Gorziglia M., Chanock R.M. Rotavirus: The major etiologic agent of severe infantile diarrhea may be controllable by a “Jennerian” approach to vaccination. J. Infect. Dis. 1986;153:815–822. doi: 10.1093/infdis/153.5.815. [DOI] [PubMed] [Google Scholar]
  20. McClelland D.B. Peyer's-patch-associated synthesis of immunoglobulin in germfree, specific-pathogen-free, and conventional mice. Scand. J. Immunol. 1976;5:909–915. doi: 10.1111/j.1365-3083.1976.tb03041.x. [DOI] [PubMed] [Google Scholar]
  21. McGhee J.R., Mestecky J., Dertzbaugh M.T., Eldridge J.H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10:75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  22. Merchant A.A., Groene W.S., Cheng E.H., Shaw R.D. Murine intestinal antibody response to heterologous rotavirus infection. J. Clin. Microbiol. 1991;29:1693–1701. doi: 10.1128/jcm.29.8.1693-1701.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Offit P.A., Clark H.F. Protection against rotavirus-induced gastroenteritis in a murine model by passively acquired gastrointestinal but not circulating antibodies. J. Virol. 1985;54:58–64. doi: 10.1128/jvi.54.1.58-64.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Offit P.A., Clark H.F. Maternal antibody-mediated protection against gastroenteritis due to rotavirus in newborn mice is dependent on both serotype and titer of antibody. J. Infect. Dis. 1985;152:1152–1158. doi: 10.1093/infdis/152.6.1152. [DOI] [PubMed] [Google Scholar]
  25. Offit P.A., Dudzik K. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J. Virol. 1989;63:3507–3512. doi: 10.1128/jvi.63.8.3507-3512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Offit P.A., Clark H.F., Blavat G., Greenberg H.B. Reassortant rotaviruses containing structural proteins VP3 and VP7 from different parents induce antibodies protective against each parental serotype. J. Virol. 1986;60:491–496. doi: 10.1128/jvi.60.2.491-496.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Offit P.A., Shaw R.D., Greenberg H.B. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to surface proteins VP3 and VP7. J. Virol. 1986;58:700–703. doi: 10.1128/jvi.58.2.700-703.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ojeh C.K., Jiang B.M., Tsunemitsu H., Kang S.Y., Weilnau P.A., Saif L.J. Reactivity of monoclonal antibodies to the 41-kilodalton protein of porcine group C rotavirus with homologous and heterologous rotavirus serogroups in immunofluorescence tests. J. Clin. Microbiol. 1991;29:2051–2055. doi: 10.1128/jcm.29.9.2051-2055.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paul P., Mengeling W.L., Malstrom C.E., van Deusen R.A. Production and characterization of monoclonal antibodies to porcine immunoglobulin gamma, alpha, and light chains. Am. J. Vet. Res. 1989;50:471–475. [PubMed] [Google Scholar]
  30. Phillips R.W., Tumbleson M.E. Models. In: Tumbleson M.E., editor. Vol. 1. Plenum Press; New York: 1986. pp. 437–440. (Swine in Biomedical Research). [Google Scholar]
  31. Porter P.A. Structural and functional characteristics of immunoglobulins of the common domestic species. In: Brandley C.A., Cornelius C.E., editors. Vol. 23. Academic Press; New York: 1979. pp. 1–22. (Advanced Veterinary Science). [DOI] [PubMed] [Google Scholar]
  32. Ramig R. The effects of host age, virus dose, and virus strain on heterologous rotavirus infection of suckling mice. Microbiol. Pathol. 1988;4:189–202. doi: 10.1016/0882-4010(88)90069-1. [DOI] [PubMed] [Google Scholar]
  33. Riepenhoff-Talty M., Bogger-Goren S., Li P., Carmody P.J., Barrett H.J., Ogra P.L. Development of serum and intestinal antibody response to rotavirus after naturally acquired rotavirus infection in man. J. Med. Virol. 1981;8:215–222. doi: 10.1002/jmv.1890080309. [DOI] [PubMed] [Google Scholar]
  34. Saif L.J. Development of nasal, fecal, and serum isotype-specific antibodies in calves chalenged with bovine coronavirus or rotavirus. Vet. Immunol. Immunopathol. 1987;17:425–437. doi: 10.1016/0165-2427(87)90159-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saif L.J., Bohl E.H., Kohler E.M., Hughes J.H. Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (reovirus-like agent) of swine. Am. J. Vet. Res. 1977;38:13–20. [PubMed] [Google Scholar]
  36. Schaller J.P., Saif L.J., Cordle C.T., Candler E., Winship T.R., Smith K.L. Prevention of human rotavirus-induced diarrhea in gnotobiotic piglets using bovine antibody. J. Infect. Dis. 1992;165:623–630. doi: 10.1093/infdis/165.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shaw R.D., Groene W.S., Mackow E.R., Merchant A.A., Cheng E.H. VP4-specific intestinal antibody response to rotavirus in a murine model of heterotypic infection. J. Virol. 1991;65:3052–3059. doi: 10.1128/jvi.65.6.3052-3059.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shaw R.D., Groene W.S., Mackow E.R., Merchant A.A., Cheng E.H. Recombinant baculovirus-expressed rotavirus protein (VP4) in an ELISPOT assay of antibody secretion. Viral Immunol. 1992;5:51–59. doi: 10.1089/vim.1992.5.51. [DOI] [PubMed] [Google Scholar]
  39. Sedgwick J.D., Holt P.G. A solid phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J. Immunol. Methods. 1983;57:301–309. doi: 10.1016/0022-1759(83)90091-1. [DOI] [PubMed] [Google Scholar]
  40. VanCott J., Brim T.A., Simkins R.S., Saif L.J. Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs. J. Immunol. 1993;150:3990–4000. [PubMed] [Google Scholar]
  41. VanCott J., Brim T.A., Lunney J.K., Saif L.J. Contribution of immune responses induced in muscosal lymphoid tissues of pigs inoculated with respiratory or enteric strains of coronavirus to immunity against enteric coronavirus challenge. J. Immunol. 1994;152:3980–3990. [PubMed] [Google Scholar]
  42. Van der Heijden P.J., Stok W. Improved procedure for the isolation of functionally active lymphoid cells from the murine intestine. J. Immunol. Methods. 1987;103:161–167. doi: 10.1016/0022-1759(87)90285-7. [DOI] [PubMed] [Google Scholar]
  43. Wilson A.D., Stokes C.R., Bourne F.J. Responses of intraepithelial lymphocytes to T cell mitogens: a comparison between murine and porcine responses. Immunology. 1986;58:621–625. [PMC free article] [PubMed] [Google Scholar]
  44. Wyatt R.G., James W.D., Bohl E.H., Theil K.W., Saif L.J. Human rotavirus type 2: cultivation in vitro. Science. 1980;207:189–191. doi: 10.1126/science.6243190. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES