Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;36(2):193–198. doi: 10.1016/0165-5728(92)90050-U

The expression of major histocompatibility complex (MHC) class I antigens in the brain differs markedly in acute and persistent infections with lymphocytic choriomeningitis virus (LCMV)

L Mucke 1,, MBA Oldstone 1
PMCID: PMC7119833  PMID: 1732281

Abstract

Intracranial inoculation of immunocompetent mice with lymphocytic choriomeningitis virus (LCMV) induces a fatal neurologic illness. In this disease a marked increase in MHC class I expression was found, closely associated with viral antigens and inflammatory infiltrates, in meninges, choroid plexus and ventricular ependyma but not within the brain parenchyma. Immunosuppression prevented MHC induction. Mice inoculated at birth had persistent infections, with LCMV antigens found primarily in neurons, but no inflammatory cells or focal increase in MHC class I. Failure of infected neurons to express MHC class I allow them to escape destruction by cytotoxic T cells (CTL) but may increase their susceptibility to be persistently infected by non-lytic viruses.

Keywords: Major histocompatibility complex, Lymphocytic choriomeningitis virus, Persistence, Meningitis, Cytotoxic T cell

References

  1. Buchmeier M.J., Welsh R.M., Dutko F.J., Oldstone M.B.A. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  2. Buchmeier M.J., Lewicki H.A., Tomori O., Oldstone M.B.A. Monoclonal antibodies to lymphocytic choriomeningitis and Pichinde viruses: generation, characterization and cross-reactivity with other arenaviruses. Virology. 1981;113:73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  3. Cole G.A., Nathanson N., Prendergast R.A. Requirement for θ-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972;238:335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  4. Dixon J.E., Allan J.E., Doherty P.C. The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. Cell Immunol. 1987;107:8–14. doi: 10.1016/0008-8749(87)90260-7. [DOI] [PubMed] [Google Scholar]
  5. Doherty P.C., Zinkernagel R.M. T-cell-mediated immunopathology in viral infections. Transplant. Rev. 1974;19:89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  6. Doyle M.V., Oldstone M.B.A. Interactions between viruses and lymphocytes. I. In vivo replication of lymphocytic choriomeningitis virus during both chronic and acute viral infections. J. Immunol. 1978;121:1262–1269. [PubMed] [Google Scholar]
  7. Dutko F.J., Oldstone M.B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J. Gen. Virol. 1983;64:1689–1698. doi: 10.1099/0022-1317-64-8-1689. [DOI] [PubMed] [Google Scholar]
  8. Fazakerley J.K., Southern P., Bloom F., Buchmeier M.J. High resolution in situ hybridization to determine the cellular distribution of lymphocytic choriomeningitis virus RNA in the tissues of persistently infected mice: relevance to arenavirus disease and mechanisms of viral persistence. J. Gen. Virol. 1991 doi: 10.1099/0022-1317-72-7-1611. (in press) [DOI] [PubMed] [Google Scholar]
  9. Flyer D.C., Burakoff S.J., Faller D.V. Retrovirus-induced changes in major histocompatibility complex antigen expression influence susceptibility to lysis by cytotoxic T lymphocytes. J. Immunol. 1985;135:2287–2292. [PubMed] [Google Scholar]
  10. Gairin J.E., Joly E., Oldstone M.B.A. Persistent infection with lymphocytic choriomeningitis virus enhances expression of MHC class I glycoprotein on cultured mouse brain endothelial cells. J. Immunol. 1991;146:3953–3957. [PubMed] [Google Scholar]
  11. Gilden D.H., Cole G.A., Monjan A.A., Nathanson N. Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. I. Cyclophosphamide-mediated induction of the virus carrier-state in adult mice. J. Exp. Med. 1972;135:860–873. doi: 10.1084/jem.135.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hickey W.F., Kimura H. Vol. 84. 1987. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigen and the presence of scattered T lymphocytes in rat central nervous system; pp. 2082–2086. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hotchin J.E., Cinits M. Lymphocytic choriomeningitis infection of mice as a model for the study of latent virus infection. Can. J. Microbiol. 1958;4:149–163. doi: 10.1139/m58-016. [DOI] [PubMed] [Google Scholar]
  14. Joly E., Mucke L., Oldstone M.B.A. Viral persistence in neurons can be explained by a lack of MHC class I expression. Science. 1991 doi: 10.1126/science.1891717. (in press) [DOI] [PubMed] [Google Scholar]
  15. Klavinskis L.S., Tishon A., Oldstone M.B.A. Efficiency and effectiveness of cloned virus-specific cytotoxic T lymphocytes in vivo. J. Immunol. 1989;143:2013–2016. [PubMed] [Google Scholar]
  16. Lampert P.W., Oldstone M.B.A. Pathology of the choroid plexus in spontaneous immune complex disease and chronic viral infections. Virch. Arch. 1974;363:21–32. doi: 10.1007/BF00432202. [DOI] [PubMed] [Google Scholar]
  17. Lampson L.A., Hickey W.F. Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from ‘histologically normal’ to that showing different levels of glial tumor involvement. J. Immunol. 1986;136:4054–4062. [PubMed] [Google Scholar]
  18. Lehmann-Grube F. Portraits of viruses: arenaviruses. Intervirology. 1984;22:121–145. doi: 10.1159/000149543. [DOI] [PubMed] [Google Scholar]
  19. Lemke H., Hämmerling G.J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol. Rev. 1979;47:176–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  20. Main E., Lampson L.A., Hart M.K., Kornbluth J., Wilson D.B. Human neuroblastoma cell lines are susceptible to lysis by natural killer cells but not by cytotoxic T lymphocytes. J. Immunol. 1985;135:242–246. [PubMed] [Google Scholar]
  21. Mims C.A., Blanden R.V. Antiviral action of immune lymphocytes in mice infected with lymphocytic choriomeningitis virus. Infect. Immun. 1972;6:695–698. doi: 10.1128/iai.6.5.695-698.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oldstone M.B., Ahmed R., Byrne J., Buchmeier M.J., Riviere Y., Southern P. Virus and immune responses: lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Br. Med. Bull. 1985;41:70–74. doi: 10.1093/oxfordjournals.bmb.a072029. [DOI] [PubMed] [Google Scholar]
  23. Oldstone M.B., Blount P., Southern P.J., Lampert P.W. Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature. 1986;321:239–243. doi: 10.1038/321239a0. [DOI] [PubMed] [Google Scholar]
  24. Plata F., Tilkin A.F., Levy J.-P., Lilly F. Quantitative variations in the expression of H-2 antigens on murine leukemia virus-infected tumor cells can affect the H-2-restriction patterns of tumor-specific cytolytic T lymphocytes. J. Exp. Med. 1981;154:1795–1810. doi: 10.1084/jem.154.6.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rodriguez M., Buchmeier M.J., Oldstone M.B., Lampert P.W. Ultrastructural localization of viral antigens in the CNS of mice persistently infected with lymphocytic choriomeningitis virus (LCMV) Am. J. Pathol. 1983;110:95–100. [PMC free article] [PubMed] [Google Scholar]
  26. Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  27. Suzumura A., Lavi E., Bhat S., Murasko D., Weiss S.R., Silberberg D.H. Induction of glial cell MHC antigen expression in neurotropic coronavirus infections. Characterization of the H-2-inducing soluble factor elaborated by infected brain cells. J. Immunol. 1988;140:2068–2072. [PubMed] [Google Scholar]
  28. Walker D.H., Murphy F.A., Whitefield S.G., Bauer S.P. Lymphocytic choriomeningitis: ultrastructural pathology. Exp. Mol. Pathol. 1975;23:245–265. doi: 10.1016/0014-4800(75)90022-2. [DOI] [PubMed] [Google Scholar]
  29. Wekerle H., Linington C., Lassmann H., Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci. 1986;9:271–277. [Google Scholar]
  30. Wekerle H., Sun D., Oropeza-Wekerle R.L., Meyermann R. Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J. Exp. Biol. 1987;132:43–57. doi: 10.1242/jeb.132.1.43. [DOI] [PubMed] [Google Scholar]
  31. Wong G.H., Bartlett P.F., Clark Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature. 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  32. Zinkernagel R.M., Doherty P.C. Cytotoxic thymus-derived lymphocytes in cerebrospinal fluid of mice with lymphocytic choriomeningitis. J. Exp. Med. 1973;138:1266–1269. doi: 10.1084/jem.138.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zinkernagel R.M., Doherty P.C. Restriction of in vitro T cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974;248:701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]
  34. Zinkernagel R.M., Doherty P.C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1983;27:51–77. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES