Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 13;19(1):159–165. doi: 10.1016/0165-5728(88)90045-8

Cytotoxic effect of myelin basic protein-reactive T cells on cultured oligodendrocytes

Kuniyuki Kawai 1,, Burton Zweiman 2
PMCID: PMC7119855  PMID: 2456302

Abstract

To help clarify effector mechanisms in experimental allergic encephalitis (EAE), the cytotoxic effects of myelin basic protein (MBP)-reactive lymphocytes on oligodendrocytes were studied using a 51Cr release assay. MBP-reactive encephalitogenic T cell lines were cytotoxic to 51Cr-labeled oligodendrocyte target cells derived from Lewis rat fetal brain-dissociated culture, when incubated for 6 h in the presence of antigen-presenting cells (APC) and MBP (percent51Cr release = 65±3% vs. spontaneous release = 22±3% vs. normal lymph node cells + APC and MBP = 20 ± 3%). This reaction is time dependent, likely MHC restricted, and is not just a nonspecific toxic effect against any Lewis target cells since neither fibroblasts nor astrocytes were affected. Other (tetanus toxoid-reactive) lymphoblasts stimulated by specific antigen were not cytotoxic to the oligodendrocytes. These findings suggest that oligodendrocytes might be target cells for MBP-reactive lymphocytes in EAE if antigen presentation is appropriate.

Keywords: Experimental allergic encephalitis, Oligodendrocyte, Myelin basic protein-reactive lymphocyte, Cytotoxic test, 51Cr release assay

References

  1. Cohen J.A., Essayan D.M., Zweiman B., Lisak R.P. Limiting dilution analysis of the frequency of antigen-reactive lymphocytes isolated from the central nervous system of Lewis rats with experimental allergic encephalomyelitis. Cell. Immunol. 1987;108:203–213. doi: 10.1016/0008-8749(87)90204-8. [DOI] [PubMed] [Google Scholar]
  2. Deibler G.E., Martenson R.E., Kies M.W. Large scale production of myelin basic protein from central nervous tissue of several mammalian species. Prep. Biochem. 1972;2:139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  3. Hale A.H., Evans D.L., McGee M.P. A study of the ability of H-2Kk-Iak containing subcellular fractions to elicit primary anti-H-2 cytotoxic T lymphocytes. Cell. Immunol. 1981;61:365–374. doi: 10.1016/0008-8749(81)90384-1. [DOI] [PubMed] [Google Scholar]
  4. Hoffman P.M., Gaston D.D., Spitler L.E. Comparison of experimental allergic encephalomyelitis induced with spinal cord, basic protein and synthetic encephalitogenic peptide. Clin. Immunol. Immunopathol. 1973;1:364–371. doi: 10.1016/0090-1229(73)90053-6. [DOI] [PubMed] [Google Scholar]
  5. Krensky A.M., Clayberger C., Reiss C.S., Strominger J.L., Burakoff S.J. Specificity of OKT4+ cytotoxic T lymphocytes clones. J. Immunol. 1982;129:2001–2003. [PubMed] [Google Scholar]
  6. Lasmann H., Wisniewski H.M. Chronic relapsing experimental allergic encephalomyelitis: effect of age at the time of sensitization on clinical course and pathology. Acta Neuropathol. 1979;47:111–116. doi: 10.1007/BF00717033. [DOI] [PubMed] [Google Scholar]
  7. McCarthy K.D., de Vellis J. Preparation of separate astroglia and oligodendroglia cell culture from rat cerebral tissue. J. Cell Biol. 1980;85:890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meeusen E. The induction of cytotoxic T-cell responses with H-2 antigens shed from viable lymphocytes. Immunology. 1987;61:321–326. [PMC free article] [PubMed] [Google Scholar]
  9. Moretta L., Mingari P.R., Sekaly P., Chapuis B., Cerottini J.-C. Surface markers of cloned human T cells with various cytotoxic activities. J. Exp. Med. 1981;154:569–574. doi: 10.1084/jem.154.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Panitch H., Ciccone C. Induction of recurrent experimental allergic encephalomyelitis with myelin basic protein. Ann. Neurol. 1981:433–438. doi: 10.1002/ana.410090504. [DOI] [PubMed] [Google Scholar]
  11. Pender M.P. Demyelination and neurological signs in experimental allergic encephalomyelitis. J. Neuroimmunol. 1987;15:11–24. doi: 10.1016/0165-5728(87)90003-8. [DOI] [PubMed] [Google Scholar]
  12. Röyttä M., Lyman W.D., Roth G.A., Bornstein M.B., Raine C.S. Preliminary analysis of cell and serum-induced demyelination in vitro using a syngeneic system. Acta Neurol. Scand. 1985;71:226–236. doi: 10.1111/j.1600-0404.1985.tb03193.x. [DOI] [PubMed] [Google Scholar]
  13. Strassman G., Bach F.H. OKT4+ cytotoxic T cells can lyse targets via class I molecules and can be blocked by monoclonal antibody against T4 molecules. J. Immunol. 1984;133:1705–1709. [PubMed] [Google Scholar]
  14. Sun D., Wekerle H. Ia-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. Nature. 1986;320:70–72. doi: 10.1038/320070a0. [DOI] [PubMed] [Google Scholar]
  15. Suzumura A., Bhat S.P., Eccleston A., Lisak R.P., Silberberg D.H. The isolation and long-term culture of oligodendrocytes from newborn mouse brain. Brain Res. 1984;324:379–383. doi: 10.1016/0006-8993(84)90054-4. [DOI] [PubMed] [Google Scholar]
  16. Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  17. Vandenbark A.A., Nilaver G., Konat G., Teal P., Offner H. Chronic neurologic dysfunction and demyelination induced in Lewis rats by repeated injections of encephalitogenic T lymphocytes line. J. Neurosci. Res. 1986;16:643–656. doi: 10.1002/jnr.490160406. [DOI] [PubMed] [Google Scholar]
  18. Vass K., Lassmann H., Wisniewski H.M., Iqbal K. Ultracytochemical distribution of myelin basic protein after injection into the cerebrospinal fluid. Evidence for transport through the blood-brain barrier and binding to the luminal surface of cerebral veins. J. Neurol. Sci. 1984;63:423–433. doi: 10.1016/0022-510x(84)90165-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES