Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 14;67(1):37–45. doi: 10.1016/0165-3806(92)90023-P

Microglial cell response to neuronal degeneration in the brain of brindled mouse

Masaki Ohno 1, Yasuto Higashi 1, Kinuko Suzuki 1,
PMCID: PMC7119898  PMID: 1638741

Abstract

Reactive changes of microglia in response to neuronal degeneration were investigated in the brains of brindled mottled mice with immunocytochemical technique. This mutant has a genetic defect in copper metabolism and spontaneous neuronal degeneration develops around postnatal day 10, in particular in the parasagittal regions of the cerebral cortex and thalamus. The antibodies to macrophage specific antigen, F4/80 and to type-three complement receptor, Mac-1 were used for the study. Reactive morphological changes of microglia, which are immuno-reactive to the antibodies to F4/80 and/or Mac-1, were demonstrated in areas corresponding to those of neuronal degeneration, coincident with the emergence of cells expressing major histocompatibility complex class II, Ia, antigen. Some of the Ia expressing cells had morphological features of ramified microglia, while others were rod shaped with few processes and were mostly located in the perivascular regions. The focal nature of such cellular changes suggests that signal(s) from the degenerating neurons may be responsible for microglial activation and cellular expression of the Ia antigen in the brain of the brindled mouse.

Keywords: Neuronal degeneration, Microglia, Macrophage, Ia expression, Brindled mouse

References

  • 1.Akiyama H., McGeer P.L. Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res. 1989;489:247–253. doi: 10.1016/0006-8993(89)90857-3. [DOI] [PubMed] [Google Scholar]
  • 2.Beller D.I., Springer T.A., Schreiber R.D. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 1982;156:1000–1009. doi: 10.1084/jem.156.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Benacerraf B. Role of MHC gene production in immune regulation. Science. 1981;212:1229–1238. doi: 10.1126/science.6165083. [DOI] [PubMed] [Google Scholar]
  • 4.Brück W., Friede R.L. Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro. Acta Neuropathol. (Berl.) 1990;80:415–418. doi: 10.1007/BF00307696. [DOI] [PubMed] [Google Scholar]
  • 5.Colton C.A., Gilbert D.L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 1987;223:284–288. doi: 10.1016/0014-5793(87)80305-8. [DOI] [PubMed] [Google Scholar]
  • 6.del Rio-Hortega P. El ‘tercer elemento’ de los centros nerviosos. I. La microglia en estado normal. II. Intervencion de la microglia en los processos pathologicos. III. Naturaleza probable de la microglia. Bol. Soc. Esp. Biol. 1919;9:68–120. [Google Scholar]
  • 7.del Rio-Hortega P. Microglia. In: Penfield W., editor. 2nd edn. Vol. 2. Paul B. Hoeber; New York: 1932. pp. 481–534. (Cytology and Cellular Pathology of the Nervous System). [Google Scholar]
  • 8.Dickson D.W., Mattiace L.A., Kure K., Huchins K., Lymen W.D., Brosnan C.F. Biology of disease. Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab. Invest. 1991;64:135–156. [PubMed] [Google Scholar]
  • 9.Eneroth A., Kristensson K., Ljungdahl A., Olsson T. Interferon-γ-like-immunoreactivity in developing rat spinal ganglia neurons in vivo and in vitro. J. Neurocytol. 1991;20:225–231. doi: 10.1007/BF01186995. [DOI] [PubMed] [Google Scholar]
  • 10.Frei K., Bodmer S., Schwerdel C., Fontana A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J. Immunol. 1986;137:3521–3527. [PubMed] [Google Scholar]
  • 11.Fujimiya M., Kimura H., Maeda T. Postnatal development of serotonin nerve fibers in the somatosensory cortex of mice studied by immunocytochemistry. J. Comp. Neurol. 1986;246:191–201. doi: 10.1002/cne.902460205. [DOI] [PubMed] [Google Scholar]
  • 12.Giulian D., Ingeman J.E. Colony-stimulating factors as promotors of ameboid microglia. J. Neurosci. 1988;8:4707–4717. doi: 10.1523/JNEUROSCI.08-12-04707.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Giulian D., Johnson B., Krebs J.F., George J.K., Tapscott M. Microglial mitogens are produced in the developing and injured mammalian brain. J. Cell Biol. 1991;112:323–333. doi: 10.1083/jcb.112.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Graeber M.B., Streit W.J. Microglia: immune network in the CNS. Brain Pathol. 1990;1:2–5. doi: 10.1111/j.1750-3639.1990.tb00630.x. [DOI] [PubMed] [Google Scholar]
  • 15.Graeber M.B., Streit W.J., Kreutzberg G.W. Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 1988;21:18–24. doi: 10.1002/jnr.490210104. [DOI] [PubMed] [Google Scholar]
  • 16.Hayashi T., Morimoto C., Burks J.S., Kerr C., Hauser S.L. Dual label immunocytochemistry of the active multiple sclerosis lesions; major histocompatibility complex and action antigens. Ann. Neurol. 1988;24:523–531. doi: 10.1002/ana.410240408. [DOI] [PubMed] [Google Scholar]
  • 17.Hickey W.F. T-lymphocyte entry and antigen recognition in the central nervous system. In: Ader R., Cohen N., Felten D., editors. 2nd edn. II. Academic Press; San Diego: 1990. pp. 149–175. (Psychoneuroimmunology). [Google Scholar]
  • 18.Hickey W.F., Osborn J.P., Kirby W.M. Expression of Ia molecules by astrocytes during acute experimental allergic encephalomyletis in the Lewis rat. Cell Immunol. 1985;91:528–535. doi: 10.1016/0008-8749(85)90251-5. [DOI] [PubMed] [Google Scholar]
  • 19.Higashi Y., Komiyama A., Suzuki K. The twitcher mouse: immunocytochemical study of Ia expression in macrophages. J. Neuropathol. Exp. Neurol. 1992;51:47–57. doi: 10.1097/00005072-199201000-00007. [DOI] [PubMed] [Google Scholar]
  • 20.Itagaki S., McGeer P.L., Akiyama H., Zhu S., Selkoe D. Relationships of microglia and astrocytes to amyloid deposits of Alzheimer's disease. J. Neuroimmunol. 1989;24:173–182. doi: 10.1016/0165-5728(89)90115-x. [DOI] [PubMed] [Google Scholar]
  • 21.Kiefer R., Haas A., Kreutzberg G.W. Gamma interferon-like immunoreactive material in rat neurons: evidence against a close relationship to gamma interferon. Neuroscience. 1991;45:551–560. doi: 10.1016/0306-4522(91)90270-x. [DOI] [PubMed] [Google Scholar]
  • 22.Kiefer R., Kreutzberg G.W. Gamma interferon-like immuno-reactivity in the rat nervous system. Neuroscience. 1990;37:725–734. doi: 10.1016/0306-4522(90)90103-b. [DOI] [PubMed] [Google Scholar]
  • 23.Konno H., Yamamoto T., Iwasaki Y., Suzuki H., Saitoh T., Terunuma H. Wallerian degeneration induces Ia-antigen expression in the rat brain. J. Neuroimmunol. 1989;25:151–159. doi: 10.1016/0165-5728(89)90132-x. [DOI] [PubMed] [Google Scholar]
  • 24.Lassmann H., Zimprich F., Vass K., Hickey W.F. Microglial cells are a component of the perivascular glia limitans. J. Neurosci. Res. 1991;28:236–243. doi: 10.1002/jnr.490280211. [DOI] [PubMed] [Google Scholar]
  • 25.Ljungdahl Å., Olsson T., Van der Meide P.H., Holmdahl R., Klareskog L., Höjeberg B. Interferon-gamma-like immuno-reactivity in certain neurons of the central and peripheral nervous system. J. Neurosci. Res. 1989;24:451–456. doi: 10.1002/jnr.490240316. [DOI] [PubMed] [Google Scholar]
  • 26.Male D.R., Pryce G., Hughes C.C.W. Antigen presentation in the brain: MHC induction on brain endothelium and astrocytes compared. Immunology. 1987;60:453–459. [PMC free article] [PubMed] [Google Scholar]
  • 27.McGeer P.L., Itagaki S., Boyes B.E., McGeer E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988;38:1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
  • 28.McGeer P.L., Itagaki S., McGeer E.G. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76:550–557. doi: 10.1007/BF00689592. [DOI] [PubMed] [Google Scholar]
  • 29.McLean I.W., Nakane P.K. Periodate-lysine-paraformaldehyde fixative, a new fixative for immunoelectron microscopy. J. Histochem. Cytochem. 1974;22:1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  • 30.Michaels J., Price R.W., Rosenblum M.K. Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion. Acta Neuropathol. (Berl.) 1988;76:373–379. doi: 10.1007/BF00686974. [DOI] [PubMed] [Google Scholar]
  • 31.Momburg F., Koch N., Moller P., Moldenhauer G., Butcher G.W., Hammerling G.J. Differential expression of Ia and Ia-associated invariant chain in mouse tissue after in vivo treatment with IFN-γ. J. Immunol. 1983;136:940–948. [PubMed] [Google Scholar]
  • 32.Murabe Y., Sano Y. Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res. 1982;225:469–485. doi: 10.1007/BF00214798. [DOI] [PubMed] [Google Scholar]
  • 33.Olsson T., Kristensson K., Ljungdahl Å., Maehlen J., Holmdahl R., Klareskog L. Gamma-interferon-like immunoreactivity in axotomized rat motor neurons. J. Neurosci. 1989;9:3870–3875. doi: 10.1523/JNEUROSCI.09-11-03870.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Perry V.H., Hume D.A., Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15:313–326. doi: 10.1016/0306-4522(85)90215-5. [DOI] [PubMed] [Google Scholar]
  • 35.Polak M., D'Amelio F., Johnson J.E., Haymaker W. Microglial cells: origins and reactions. In: Haymaker W., Adams R.D., editors. Histology and Histopathology of the Nervous System. Charles C. Thomas; Springfield: 1982. pp. 481–559. [Google Scholar]
  • 36.Sasaki A., Levison S.W., Ting J.P.Y. Comparison and quantitation of Ia antigen expression on cultured macroglia and ameboid microglia from Lewis rat cerebral cortex: analyses and implications. J. Neuroimmunol. 1989;25:63–74. doi: 10.1016/0165-5728(89)90087-8. [DOI] [PubMed] [Google Scholar]
  • 37.Shafit-Zagardo B., Peterson C., Goldman J.E. Rapid increases in glial fibrillary acidic protein mRNA and protein levels in the copper-deficient brindled mouse. J. Neurochem. 1988;51:1258–1266. doi: 10.1111/j.1471-4159.1988.tb03095.x. [DOI] [PubMed] [Google Scholar]
  • 38.Sobel R.A., Blachette B.W., Bhan A.K., Colvin R.B. The immunopathology of experimental allergic encephalomyelitis. II. Endothelial cell Ia increases prior to inflammatory cell infiltration. J. Immunol. 1984;132:2402–2407. [PubMed] [Google Scholar]
  • 39.Springer T.A., Anderson D.C. 2nd edn. Vol. 51. 1986. Leukocyte complement receptors and adhesion proteins in the inflammatory response: insights from an experiment of nature; pp. 47–57. (Biochem. Soc. Symp.). [PubMed] [Google Scholar]
  • 40.Streit W.J., Graeber M.B., Kreutzberg G.W. Functional plasticity of microglia: a review. Glia. 1988;1:301–307. doi: 10.1002/glia.440010502. [DOI] [PubMed] [Google Scholar]
  • 41.Streit W.J., Graeber M.B., Kreutzberg G.W. Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp. Neurol. 1989;105:115–126. doi: 10.1016/0014-4886(89)90111-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Streit W.J., Graeber M.B., Kreutzberg G.W. Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J. Neuroimmunol. 1989;25:117–123. doi: 10.1016/0165-5728(89)90167-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Streit W.J., Kreutzberg G.W. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J. Comp. Neurol. 1988;268:248–263. doi: 10.1002/cne.902680209. [DOI] [PubMed] [Google Scholar]
  • 44.Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  • 45.Suzumura A., Mezitiz S.G.E., Gonatas N.K., Silberberg D.H. MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: induction of Ia antigen expression by gamma-interferon. J. Neuroimmunol. 1987;15:263–278. doi: 10.1016/0165-5728(87)90121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Suzumura A., Sawada M., Yamamoto H., Marunouchi T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 1990;30:111–120. doi: 10.1016/0165-5728(90)90094-4. [DOI] [PubMed] [Google Scholar]
  • 47.Ting J.-P., Shigekawa Y., Linthicum S., Weiner L.P., Frelinger J.A. 2nd edn. Vol. 78. 1981. Expression and synthesis of murine immune response-associated (Ia) antigen by brain cells; pp. 3170–3174. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Unanue E.R. Antigen-presenting function of the macrophages. Annu. Rev. Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  • 49.Wright S.D., Rao P.E., Van Voorhis W.C., Craigmyle L.S., Iida K., Talle M.A., Westberg E.F., Goldstein G., Silverstein S.C. 2nd edn. Vol. 80. 1983. Identification of C3bi receptor of human monocytes and macrophages by using monoclonal antibodies; pp. 5699–5703. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Yajima K., Suzuki K. Neuronal degeneration in the brain of the brindled mouse. A light microscope study. J. Neuropathol. Exp. Neurol. 1979;38:35–46. doi: 10.1097/00005072-197901000-00004. [DOI] [PubMed] [Google Scholar]
  • 51.Yajima K., Suzuki K. Neuronal degeneration in the brain of the brindled mouse. An ultrastructural study of the cerebral cortical neurons. Acta Neuropathol. (Berl.) 1979;45:17–25. doi: 10.1007/BF00691800. [DOI] [PubMed] [Google Scholar]

Articles from Brain Research. Developmental Brain Research are provided here courtesy of Elsevier

RESOURCES