Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 17;10(3):287–310. doi: 10.1016/0165-4608(83)90058-4

The tumor phenotype and the human gene map

Neville K Honey 1,, Thomas B Shows 1
PMCID: PMC7119902  PMID: 6354430

Abstract

The tumor phenotype is associated with the rearrangement of genetic information and the altered expression of many gene products. In this review, genes associated with the tumor phenotype have been arranged on the human gene map and indicate the extent to which the tumor phenotype involves the human genome. Nonrandom chromosomal aberrations that are frequently observed in tumors are presented. Altered metabolic demands of the tumor cell are reflected in altered gene expressions of a wide range of enzymes and other proteins, and these changed enzyme patterns are described. The study of oncogenes increasingly suggests that they may be significant in certain cancers, and the assignment of these genes has been tabulated. The biochemical and metabolic changes observed in tumors are complex; studying the patterns and interactions of these changes will aid our genetic understanding of the origins and development of tumors.

Footnotes

Supported in part by NIH Grants GM 20454, HD 05196, and ACS Grant CD-62.

References

  • 1.Mitelman F, Levan G. Clustering of aberrations to specific chromosomes in human neoplasms IV. A survey of 1,871 cases. Hereditas. 1981;95:79–139. doi: 10.1111/j.1601-5223.1981.tb01331.x. [DOI] [PubMed] [Google Scholar]
  • 2.Sandberg AA. Elsevier; New York: 1980. The Chromosomes in Human Cancer and Leukemia. [Google Scholar]
  • 3.Rowley JD, Testa JR. Chromosome abnormalities in malignant hematologic diseases. Adv Cancer Res. 1982;36:103–148. doi: 10.1016/s0065-230x(08)60423-6. [DOI] [PubMed] [Google Scholar]
  • 4.Human Gene Mapping Workshop 6. Vol. 32. 1982. pp. 1–341. (Cytogenet Cell Genet). [Google Scholar]
  • 5.Prakash K, McBride OW, Swan DC, Devare SG, Tronick SR, Aaronson SA. Vol. 79. 1982. Molecular cloning and chromosomal mapping of a human locus related to the transforming gene of Moloney murine sarcoma virus; pp. 5210–5214. (Proc Natl Acad Sci, USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Sakaguchi AY (in press): Genetic organization of human proto-oncogenes. In Oncogenes and Retroviruses. Evaluation of Basic Findings and Clinical Potential.
  • 7.Epstein MA, Achong BG. The relationship of the virus to Burkitt's lymphma. In: Epstein MA, Achong BG, editors. The Epstein-Barr Virus. Springer-Verlag; Berlin: 1979. pp. 321–337. [Google Scholar]
  • 8.Erikson J, Finan J, Nowell PC, Croce CM. Vol. 79. 1982. Translocation of immunoglobulin VH genes in Burkitt lymphoma; pp. 5611–5615. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Swan DC, McBride OW, Robbins KC, Keithley DA, Reddy EP, Aaronson SA. Vol. 79. 1982. Chromosomal mapping of the simian sarcoma virus onc gene analogue in human cells; pp. 4691–4695. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Ferrell RE, Riccardi VM. Catalase levels in patients with aniridia and/or Wilms' tumor: utility and limitations. Cytogenet Cell Genet. 1981;31:120–123. doi: 10.1159/000131636. [DOI] [PubMed] [Google Scholar]
  • 11.Zabel BU, Naylor SL, Sakaguchi AY, Shows TB, Gusella JF, Housman D, Shine J, Bell GI. High resolution in situ hybridization: Localization of a DNA restriction polymorphism, the human proopiomelanocortin gene, and the human insulin gene. Am J Hum Genet. 1982;34:153A. [Google Scholar]
  • 12.Johnson MP, Ramsay N, Cervenka J, Wang N. Retinoblastoma and its association with a deletion in chromosome #13: A survey using high-resolution chromosome techniques. Cancer Genet Cytogenet. 1982;6:29–37. doi: 10.1016/0165-4608(82)90018-8. [DOI] [PubMed] [Google Scholar]
  • 13.Sparkes RS, Sparkes MC, Wilson MG, Towner JW, Benedict W, Murphree AL, Yunis JJ. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science. 1980;208:1042–1044. doi: 10.1126/science.7375916. [DOI] [PubMed] [Google Scholar]
  • 14.Whang-Peng J, Bunn PA, Jr, Kao-Shan CS, Lee EC, Carney DN, Gazdar A, Minna JD. A nonrandom chromosomal abnormality, del 3p(14–23), in human small cell lung cancer (SCLC) Cancer Genet Cytogenet. 1982;6:119–134. doi: 10.1016/0165-4608(82)90077-2. [DOI] [PubMed] [Google Scholar]
  • 15.Wake N, Hreshchyshyn MM, Piver SM, Matsui S-I, Sandberg AA. Specific chromosome change in ovarian cancer. Cancer Genet Cytogenet. 1980;2:87–88. [Google Scholar]
  • 16.Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301:592–595. doi: 10.1056/NEJM197909133011107. [DOI] [PubMed] [Google Scholar]
  • 17.Bertrand S, Leftheriotis E, Dore JF. Anomalies chromosomiques numeriquest et structurales dans 36 lignees de melanoma malin humain. C R Acad Sci Paris Series III. 1982;294:459–462. [PubMed] [Google Scholar]
  • 18.Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 1981;41:4678–4686. [PubMed] [Google Scholar]
  • 19.Brito-Babapulle V, Atkin NB. Break points in chromosome #1 abnormalities of 218 human neoplasms. Cancer Genet Cytogenet. 1981;4:215–225. doi: 10.1016/0165-4608(81)90015-7. [DOI] [PubMed] [Google Scholar]
  • 20.Zankl H, Zang KD. Correlations between clinical and cytogenetical data in 180 human meningiomas. Cancer Genet Cytogenet. 1980;1:351–356. [Google Scholar]
  • 21.Criss WE. A review of isozymes in cancer. Cancer Res. 1971;31:1523–1542. [PubMed] [Google Scholar]
  • 22.Ibsen KH, Fishman WH. Developmental gene expression in cancer. Biochim Biophys Acta. 1979;560:243–280. doi: 10.1016/0304-419x(79)90021-0. [DOI] [PubMed] [Google Scholar]
  • 23.Schapiro F. Isozymes and cancer. Adv Cancer Res. 1973;18:77–153. doi: 10.1016/s0065-230x(08)60751-4. [DOI] [PubMed] [Google Scholar]
  • 24.Tsuiki S. Alteration of isozymes in tumors. GANN Monogr Cancer Res. 1979;24:223–243. [Google Scholar]
  • 25.Sato S, Sugimura T. Isozymes of carbohydrate enzymes. Meth Cancer Res. 1976;12:259–302. [Google Scholar]
  • 26.Denton JE, Lui MS, Aoki T, Sebolt J, Takeda E, Eble JN, Glover JL, Weber G. Enzymology of pyrimidine and carbohydrate metabolism in human colon carcinomas. Cancer Res. 1982;42:1176–1183. [PubMed] [Google Scholar]
  • 27.Westman NG, Marklund SL. Copper-and zinc-containing superoxide dismutase and manganese-containing superoxide dismutase in human tissues and human malignant tumors. Cancer Res. 1981;41:2962–2966. [PubMed] [Google Scholar]
  • 28.Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: A review. Cancer Res. 1979;39:1141–1149. [PubMed] [Google Scholar]
  • 29.Weber G. Enzymology of cancer cells (first of two parts) N Engl J Med. 1977;296:486–493. doi: 10.1056/NEJM197703032960905. [DOI] [PubMed] [Google Scholar]
  • 30.Weber G. Enzymology of cancer cells (second of two parts) N Engl J Med. 1977;296:541–551. doi: 10.1056/NEJM197703102961005. [DOI] [PubMed] [Google Scholar]
  • 31.Balinski D. Enzymes and isoenzymes in cancer. In: Sell S., editor. Cancer Markers. Humana Press; Clifton, NJ: 1980. pp. 191–224. [Google Scholar]
  • 32.Sun AS, Cederbaum AI. Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Res. 1980;40:4677–4681. [PubMed] [Google Scholar]
  • 33.Poplack DG, Blatt J, Reaman G. Purine pathway enzyme abnormalities in acute lymphoblastic leukemia. Cancer Res. 1981;41:4821–4823. [PubMed] [Google Scholar]
  • 34.Mason ME, Okey AB. Aryl hydrocarbon hydrolase activity in mouse, rat, and human mammary tumors. Cancer Res. 1981;41:2778–2782. [PubMed] [Google Scholar]
  • 35.Gasa S, Makita A, Kameya T, Kodama T, Araki E, Yoneyama T, Hirama M, Hashimoto M. Elevated activities and properties of arylsulfatases A and B and B-variant in human lung tumors. Cancer Res. 1980;40:3804–3809. [PubMed] [Google Scholar]
  • 36.Tsuda M, Katunuma N, Morris HP, Weber G. Purification, properties, and immunotitration of hepatoma glutamine phosphoribosyl-pyrophosphate amidotransferase (amidophosphoribosyl-transferase, EC 2.4.2.14) Cancer Res. 1979;39:305–311. [PubMed] [Google Scholar]
  • 37.Dobrossy L, Pavelic ZP, Vaughan M, Porter N, Bernacki RJ. Elevation of lysosomal enzymes in primary Lewis lung tumor correlated with the initiation of metastasis. Cancer Res. 1980;40:3281–3285. [PubMed] [Google Scholar]
  • 38.Okochi T, Seike H, Higashino K, Hada T, Watanabe S, Yamamura Y, Ito F, Matsuda M, Osafune M, Kotake T, Sonoda T. Alteration of hexosaminidase isozymes in human renal carcinoma. Cancer Res. 1979;39:1829–1831. [PubMed] [Google Scholar]
  • 39.Tanaka T, Kobayashi M, Saito O, Kamada N, Kuramoto A, Usui T. Biochemical activities of lysosomal acid hydrolases in leukemic cells. Clin Chim Acta. 1981;117:121–131. doi: 10.1016/0009-8981(81)90033-4. [DOI] [PubMed] [Google Scholar]
  • 40.Wilson EL, Becker MLB, Hoal EG, Dowdle EB. Molecular species of plasminogen activators secreted by normal and neoplastic human cells. Cancer Res. 1980;40:933–938. [PubMed] [Google Scholar]
  • 41.Jerzykowski T, Winter R, Matuszewski W, Piskorska D. A re-evaluation of studies on the distribution of glyoxylases in animal and tumor tissues. Int J Biochem. 1978;9:853–860. doi: 10.1016/0020-711x(78)90036-8. [DOI] [PubMed] [Google Scholar]
  • 42.Aoki T, Weber G. Carbamoyl phosphate synthetase (glutamine-hydrolyzing): Increased activity in cancer cells. Science. 1981;212:463–465. doi: 10.1126/science.7209543. [DOI] [PubMed] [Google Scholar]
  • 43.Knox WE. Karger Press; Basel: 1976. Enzyme Patterns in Fetal, Adult and Neoplastic Rat Tissues. [Google Scholar]
  • 44.Weinhouse S, Shatton JB, Morris HP. Isozyme composition, gene regulation and metabolism of experimental hepatomas. In: Schultz J, Ahmad F, editors. Cancer Enzymology. Academic; New York: 1976. pp. 41–55. [Google Scholar]
  • 45.Levine RJ, Metz SA. A classification of ectopic hormone-producing tumors. Ann NY Acad Sci. 1974;230:533–546. doi: 10.1111/j.1749-6632.1974.tb14488.x. [DOI] [PubMed] [Google Scholar]
  • 46.Naylor SL, Sakaguchi AY, Kronenburg H, Shen L-P, Rutter W, Chin W, Goodman H. Human genomic organization of glycoprotein and polypeptide hormone genes. Am J Hum Genet. 1982;34:165A. [Google Scholar]
  • 47.Yamada KM, Pouyssegur J. Cell surface glycoproteins and malignant transformation. Biochimie. 1978;60:1221–1233. doi: 10.1016/s0300-9084(79)80439-3. [DOI] [PubMed] [Google Scholar]
  • 48.Koch GA, Schoen RC, Klebe RJ, Shows TB. Assignment of fibronectin gene to human chromosome 2 using monoclonal antibodies. Exp Cell Res. 1982;141:293–302. doi: 10.1016/0014-4827(82)90217-8. [DOI] [PubMed] [Google Scholar]
  • 49.Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212:1514–1516. doi: 10.1126/science.7233237. [DOI] [PubMed] [Google Scholar]
  • 50.Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV, Gray PW (in press): Human immune interferon (IFN-γ) gene is located on chromosome 12. J Exp Med. [DOI] [PMC free article] [PubMed]
  • 51.Hirai H. Carcinoembryonic proteins. GANN Monogr Cancer Res. 1979;24:181–203. [Google Scholar]
  • 52.Klinger HP, Shows TB (submitted for publication): Suppression of tumorigenicity in somatic cell hybrids II. Human chromosomes implicated as suppressors of tumorigenicity in hybrids with Chinese hamster (CHO) cells. [PubMed]
  • 53.Sabin AB. Vol. 78. 1981. Suppression of malignancy in human cancer cells: Issues and challenges; pp. 7129–7133. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Stanbridge EJ, Der CJ, Doersen C-J, Nishimi RY, Peehl DM, Weissman BE, Wilkinson JE. Human cell hybrids: Analysis of transformation and tumorigenicity. Science. 1982;215:252–259. doi: 10.1126/science.7053574. [DOI] [PubMed] [Google Scholar]
  • 55.Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA. Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somat Cell Genet. 1981;7:699–712. doi: 10.1007/BF01538758. [DOI] [PubMed] [Google Scholar]
  • 56.Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita K-I, Shirakawa S, Miyoshi I. Vol. 78. 1981. Adult T-cell leukemia: Antigen in an ATL cell line and detection of antibodies to the antigen in human sera; pp. 6476–6480. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Yoshida M, Miyoshi I, Hinuma Y. Vol. 79. 1982. Isolation and characterization of retrovirus from cell line of human adult T-cell leukemia and its implication in the disease; pp. 2031–2035. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Essex M, Todaro G, zur Hausen H, editors. Viruses in Naturally Occurring Cancer. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1980. [Google Scholar]
  • 59.Karpas A. Viruses and leukemia. Am Sci. 1982;70:277–285. [PubMed] [Google Scholar]
  • 60.Bishop JM (in press): Retroviruses and cancer genes. Adv Cancer Res [DOI] [PubMed]
  • 61.Klein G. The role of gene dosage and genetic transpositions in carcinogenesis. Nature. 1981;294:313–317. doi: 10.1038/294313a0. [DOI] [PubMed] [Google Scholar]
  • 62.Coffin JM, Varmus HE, Bishop JM, Essex M, Hardy WD, Jr, Martin GS, Rosenberg NE, Scolnick EM, Weinberg RA, Vogt PK. Proposal for naming host cell-derived inserts in retrovirus genomes. J Virol. 1981;40:953–957. doi: 10.1128/jvi.40.3.953-957.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Dalla-Favera R, Franchini G, Martinotti S, Wong-Staal F, Gallo RC, Croce CM. Vol. 79. 1982. Chromosomal assignment of the human homologues of feline sarcoma virus and avian myeloblastosis virus onc genes; pp. 4714–4717. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Heisterkamp N, Groffen J, Stephenson JR, Spurr NK, Goodfellow PN, Soloman E, Carritt B, Bodmer WF. Chromosomal localization of human cellular homologues of two viral oncogenes. Nature. 1982;299:747–749. doi: 10.1038/299747a0. [DOI] [PubMed] [Google Scholar]
  • 65.de Martinville B, Giacolone J, Francke U, Shih C, Weinberg RA. Oncogene from human EJ Bladder carcinoma is located on the short arm of chromosome 11. Science. 1983;219:498–501. doi: 10.1126/science.6297001. [DOI] [PubMed] [Google Scholar]
  • 66.Sakaguchi AY, Naylor SL, Shows TB, Toole JJ, McCoy M, Weinberg RA (in press): Human c-Ki-ras2 proto-oncogene on chromosome 12. Science. [DOI] [PubMed]
  • 67.Sakaguchi AY, Naylor SL, Shows TB (in press): A human gene homologous to RSV v-src is on chromosome 20. Prog Nucleic Acid Res Molec Biol. [DOI] [PubMed]
  • 68.Gonda TJ, Sheiness DK, Bishop JM. Transcripts from the cellular homologs of retroviral oncogenes: Distribution among chicken tissues. Molec Cell Biol. 1982;2:617–624. doi: 10.1128/mcb.2.6.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Robinson HL, Blais BM, Tsichlis PN, Coffin JM. Vol. 79. 1982. At least two regions of the viral genome determine the oncogenic potential of avian leukosis viruses; pp. 1225–1229. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Chang EH, Furth ME, Scolnick EM, Lowy DR. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature. 1982;297:479–483. doi: 10.1038/297479a0. [DOI] [PubMed] [Google Scholar]
  • 71.Krontiris TB, Cooper GM. Vol. 78. 1981. Transforming activity of human tumor DNAs; pp. 1181–1184. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Murray MJ, Shilo B-Z, Shih C, Cowing D, Ho WH, Weinberg RA. Three different human tumor cell lines contain different oncogenes. Cell. 1981;25:355–361. doi: 10.1016/0092-8674(81)90054-4. [DOI] [PubMed] [Google Scholar]
  • 73.Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M. Human-tumor-derived cell lines contain common and different transforming genes. Cell. 1981;27:467–476. doi: 10.1016/0092-8674(81)90388-3. [DOI] [PubMed] [Google Scholar]
  • 74.Shih C, Shilo B-Z, Goldfarb MP, Dannenberg A, Weinberg RA. Vol. 76. 1979. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin; pp. 5714–5718. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981;190:261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
  • 76.Lane M-A, Sainten A, Cooper GM. Vol. 78. 1981. Activation of related transforming genes in mouse and human mammary carcinomas; pp. 5185–5189. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Lane M-A, Sainten A, Cooper GM. Stage-specific transforming genes of human and mouse B- and T-lymphocyte neoplasms. Cell. 1982;28:873–880. doi: 10.1016/0092-8674(82)90066-6. [DOI] [PubMed] [Google Scholar]
  • 78.Der CJ, Krontiris TG, Cooper GM. Vol. 79. 1982. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses; pp. 3637–3640. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474–478. doi: 10.1038/297474a0. [DOI] [PubMed] [Google Scholar]
  • 80.Shows TB, McAlpine PJ. The 1981 catalogue of assigned human genetic markers and report of the nomenclature committee. Cytogenet Cell Genet. 1982;32:221–245. doi: 10.1159/000131702. [DOI] [PubMed] [Google Scholar]
  • 81.Owerback D, Rutter WJ, Shows TB, Gray P, Goeddel DV, Lawn RM. Vol. 78. 1981. Leukocyte and fibroblast interferon genes are located on human chromosome 9; pp. 2123–2127. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Owerbach D, Rutter WJ, Cooke NE, Martial JA, Shows TB. The prolactin gene is located on chromosome 6 in humans. Science. 1981;212:815–816. doi: 10.1126/science.7221563. [DOI] [PubMed] [Google Scholar]
  • 83.Owerbach D, Bell GI, Rutter WJ, Brown JA, Shows TB. The insulin gene is located on the short arm of chromosome 11 in humans. Diabetes. 1981;30:267–270. doi: 10.2337/diab.30.3.267. [DOI] [PubMed] [Google Scholar]
  • 84.Owerback D, Rutter WJ, Martial JA, Baxter JD, Shows TB. Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like gene on chromosome 17 in humans. Science. 1980;209:289–292. doi: 10.1126/science.7384802. [DOI] [PubMed] [Google Scholar]
  • 85.Harper ME, Barrera-Saldana HA, Saunders GF. Chromosomal localization of the human placental lactogen-growth hormone gene cluster to 17q22→24. Am J Hum Genet. 1982;34:227–234. [PMC free article] [PubMed] [Google Scholar]
  • 86.Klinger HP, Ruoslahti E. Human chromosome 11 is syntenic with human specific fibronectin production in human × mouse cell hybrids. Cytogenet Cell Genet. 1980;28:271–279. doi: 10.1159/000131540. [DOI] [PubMed] [Google Scholar]
  • 87.Neel B, Jhanwan SC, Chaganti RSK, Hayward WS (in press): Two human c-onc genes are located on hte long arm of chromosome 8. Proc Natl Acad Sci USA. [DOI] [PMC free article] [PubMed]
  • 88.Dalla-Favera R, Gallo RC, Giallongo A, Croce CM. Chromosomal localization of the human homolog (c-sis) of the simian sarcoma virus onc gene. Science. 1982;218:686–688. doi: 10.1126/science.6291150. [DOI] [PubMed] [Google Scholar]
  • 89.Popovic M, Retz MS, Jr, Sarngadharan MG, Robert-Guroff M, Kalyanaraman VS, Nakao Y, Miyoshi I, Minowada J, Yoshida M, Ito Y, Gallo RC. The virus of Japanese adult T-cell leukaemia is a member of the human T-cell leukaemia virus group. Nature. 1982;300:63–66. doi: 10.1038/300063a0. [DOI] [PubMed] [Google Scholar]
  • 90.Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Change EH. Mechanism of activation of a human oncogene. Nature. 1982;300:143–149. doi: 10.1038/300143a0. [DOI] [PubMed] [Google Scholar]
  • 91.Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature. 1982;300:149–152. doi: 10.1038/300149a0. [DOI] [PubMed] [Google Scholar]
  • 92.Huerre E, Junien C, Weill D, Chu M-L, Morabito M, Foubert C, Myers JC, Cong NV, Gross M-S, Pockop DJ, Boule A, Kaplan J-C, de la Chapelle A, Ramirez F (in press): Human type 1 procollagen genes are located on different chromosomes. Proc Natl Acad Sci USA. [DOI] [PMC free article] [PubMed]
  • 93.Shows TB, Sakaguchi AY, Naylor SL. Mapping the human genome, cloned genes, DNA polymorphisms, and inherited disease. In: Harris H, Hirschhorn K, editors. Vol 12. Plenum; New York: 1982. pp. 341–352. (Advances in Human Genetics). [DOI] [PubMed] [Google Scholar]

Articles from Cancer Genetics and Cytogenetics are provided here courtesy of Elsevier

RESOURCES