Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Dec 20;40(1):1–16. doi: 10.1016/0165-2427(94)90011-6

Genetic variation in parameters reflecting immune competence of swine

Inger Edfors-Lilja a,, Eva Wattrang b, U Magnusson c, Caroline Fossum b
PMCID: PMC7119906  PMID: 8128606

Abstract

Genetic variation in total and differential white blood cell (WBC) counts, phagocytic capacity of polymorphonuclear leukocytes (PMNL), virus induced interferon-α (IFN-α) production, mitogen induced proliferation and interleukin 2 (IL-2) production of mononuclear cells (MNC) in vitro was studied in blood collected from 124 Yorkshire piglets, aged 8 weeks. The piglets were the offspring from 12 sires and 31 dams. Data from an earlier experiment, including 96 piglets of seven sires and 24 dams, were added when estimating heritabilities for Con A induced proliferation and IL-2 production. The highest heritability (h2=0.87±0.41) was estimated for the total number of PMNL. Medium high heritabilities (h2=0.3−0.4) were estimated for the phagocytic capacity of PMNL, Con A induced proliferation and IL-2 production and the total number of WBC, while the heritability estimates were lower (h2=0.00−0.08±0.12) for the total number of lymphocytes, serum concentrations of Ig and IFN-α production. Pronounced differences between litters from various dams were found for total number of lymphocytes, IFN-α production, Con A induced proliferation and IL-2 production. The Con A induced proliferation was positively correlated (r=0.48, P<0.001) with the IL-2 production and both these parameters were correlated (r=0.44 and 0.37, respectively, P<0.001) to the virus induced IFN-α production. Despite these positive correlations, no parental offspring group was uniformly superior across all traits measured. However, the heritabilities estimated for the immune parameters are sufficiently high to be used as genetic markers in selection for general immune competence of swine.

Abbreviations: CL, chemiluminescence; CTLL, cytotoxic T lymphocyte line; IFN-α, interferon-α; IL-2, interleukin 2; MDBK, Madin-Darby Bovine Kidney; MNC, mononuclear cells; NIP, natural interferon producing; PBS, phosphate buffered saline; PMNL, polymorphonuclear leukocytes; PPV, porcine parvo virus; SI, simulation index; WBC, white blood cell

References

  1. Almlid T. Indirect selection of bulls for improved resistance to diseases in dairy cattle. Livest. Prod. Sci. 1981;8:321–329. [Google Scholar]
  2. Appleyard G., Wilkie B.N., Kennedy B.W., Mallard B.A. Antibody avidity in Yorkshire pigs of high and low immune response groups. Vet. Immunol. Immunopathol. 1992;31:229–240. doi: 10.1016/0165-2427(92)90011-e. [DOI] [PubMed] [Google Scholar]
  3. Artursson K., Wallgren P., Alm G.V. Appearance of interferon-α in serum and signs of reduced immune functions in pigs after transport and installation in a fattening farm. Vet. Immunol. Immunopathol. 1989;23:345–353. doi: 10.1016/0165-2427(89)90146-3. [DOI] [PubMed] [Google Scholar]
  4. Biozzi G., Mouton D., Stiffel C., Bouthillier Y. A major role of the macrophage in quantitative genetics regulation of immuno responsiveness and anti-infectious immunity. Adv. Immunol. 1984;36:189–234. doi: 10.1016/s0065-2776(08)60902-5. [DOI] [PubMed] [Google Scholar]
  5. Burton J.L., Kennedy B.W., Burnside E.B., Wilkie B.N., Burton J.H. Variation in serum concentrations of immunoglobulins G, A, and M in Canadian Holstein-Friesian calves. J. Dairy Sci. 1989;72:135–149. doi: 10.3168/jds.S0022-0302(89)79089-5. [DOI] [PubMed] [Google Scholar]
  6. Buschmann H., Junge V., Kräusslich H., Radzikowski A. A study of the immune response to sheep erythrocytes in several breeds of swine. Med. Microbiol. Immunol. 1974;159:179–191. doi: 10.1007/BF02121334. [DOI] [PubMed] [Google Scholar]
  7. Buschmann H., Kräusslich H., Herrmann H., Meyer J., Kleinschmidt A. Quantitative immunological parameters in pigs — experiences with the evaluation of an immunocompetence profile. Z. Tierz. Züchtungsbiol. 1985;102:189–199. [Google Scholar]
  8. Charley B., Lavenant L. Characterization of blood mononuclear cells producing IFN-α following induction by coronavirus-infected cells (Porcine Transmissible Gastroenteritis Virus) Res. Immunol. 1990;141:141–151. doi: 10.1016/0923-2494(90)90133-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Maeyer E., De Maeyer-Guignard J., editors. Interferon and other related cytokines. J. Wiley; New York: 1988. pp. 364–379. [Google Scholar]
  10. Edfors-Lilja I., Fossum C. Variations in number and functional capacity of circulating leukocytes between half sib pigs. Anim. Genet. 1991;22(Suppl., 1):116. [Google Scholar]
  11. Edfors-Lilja I., Gahne B., Petersson H. Genetic influence on antibody response to two Escherichia coli antigens in pigs. II. Difference in response between paternal half-sibs. Z. Tierz. Züchtungsbiol. 1985;102:308–317. [Google Scholar]
  12. Edfors-Lilja I., Bergström M., Gustafsson U., Magnusson U., Fossum C. Genetic variation in Con A induced production of interleukin 2 by porcine peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 1991;27:351–363. doi: 10.1016/0165-2427(91)90031-7. [DOI] [PubMed] [Google Scholar]
  13. Falconer D.F. Longman Group Limited; London: 1981. Introduction to quantitative genetics. [Google Scholar]
  14. Huang J. University of Hawaii. University Microfilms International; Ann Arbor, MI: 1977. Quantitative inheritance of immunological response in swine; p. 92. (Dissertation). [Google Scholar]
  15. Jensen P.T., Christensen K. Genetic studies on the in vitro PHA transformation of porcine blood lymphocytes. Vet. Immunol. Immunopathol. 1980;2:133–143. doi: 10.1016/0165-2427(81)90045-3. [DOI] [PubMed] [Google Scholar]
  16. Johansson M., Ellegren H., Marklund L., Gustafsson U., Ringmar-Cederberg E., Andersson K., Edfors-Lilja I., Andersson L. The gene for dominant white color in the pigs is closely linked to ALB and PDGFRA on chromosome 8. Genomics. 1992;14:965–969. doi: 10.1016/s0888-7543(05)80118-1. [DOI] [PubMed] [Google Scholar]
  17. Joling P., Wever P.J.M., Mok K.S., De Vries Reilingh G., Oskam J.P.H. Estimation of porcine immune competence with help of keyhole limpet haemocyanin (KLH) Anim. Genet. 1991;22(Suppl., 1):110–111. [Google Scholar]
  18. Jordan G.W. Basis for the probit analysis of an interferon plaque reduction assay. J. Gen. Virol. 1972;14:49–61. doi: 10.1099/0022-1317-14-1-49. [DOI] [PubMed] [Google Scholar]
  19. Kehrli M.E., Weigel K.A., Freeman A.E., Thurston J.R., Kelley D.H. Bovine sire effects on daughters' in vitro blood neutrophil function, lymphocyte blastogenesis, serum complement and conglutinin levels. Vet. Immunol. Immunopathol. 1991;27:303–319. doi: 10.1016/0165-2427(91)90028-b. [DOI] [PubMed] [Google Scholar]
  20. Knudtson K.L., Lamont S.J. Association of genetics and sampling time with levels of interleukin-2 activity. Vet. Immunol. Immunopathol. 1989;22:333–343. doi: 10.1016/0165-2427(89)90169-4. [DOI] [PubMed] [Google Scholar]
  21. Knudtson K.L., Kaiser M.G., Lamont S.J. Genetic control of interleukin-2-like activity is distinct from that of mitogen response in chickens. Poult. Sci. 1990;69:65–71. doi: 10.3382/ps.0690065. [DOI] [PubMed] [Google Scholar]
  22. Kräusslich H., Buschmann H., Meyer J., Kleinschmidt A. Ein Selektionsversuch auf Antikörperbildingsvergmögen beim Schwein. Z. Tierz. Züchtungsbiol. 1983;100:101–108. [Google Scholar]
  23. Lloyd A.R., Oppenheim J.J. Poly's lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol. Today. 1992;13:169–171. doi: 10.1016/0167-5699(92)90121-M. [DOI] [PubMed] [Google Scholar]
  24. Lukic M.L., Stojkovic M.M., Kostic M., Tucic N., Vukmanovic S. Vol. 19. 1987. Cellular and genetic basis of strain differences in IL-2 production in rats; pp. 3137–3139. (Transpl. Proc.). [Google Scholar]
  25. Mallard B.A., Wilkie B.N., Kennedy B.W. Genetic selection for improved immune response in Yorkshire pigs. Abstract, 2nd Int. Vet. Immunol. Symp.; 24–29 July, Hannover; 1989. pp. 104–105. Suppl. [Google Scholar]
  26. Mallard B.A., Wilkie B.N., Kennedy B.W. The influence of the swine major histocompatibility genes (SLA) on variation in serum immunoglobulin (Ig) concentration. Vet. Immunol. Immunopathol. 1989;21:139–151. doi: 10.1016/0165-2427(89)90062-7. [DOI] [PubMed] [Google Scholar]
  27. Mallard B.A., Wilkie B.N., Kennedy B.W., Quinton M. Use of estimated breeding values in a selection index to breed yorkshire pigs for high and low immune and innate resistance factors. Anim. Biotech. 1992;3:257–280. [Google Scholar]
  28. Magnusson U., Einarsson S. Effects of exogenous oestradiol on the number and functional capacity of circulating mononuclear and polymorphonuclear leukocytes in the sow. Vet. Immunol. Immunopathol. 1990;25:235–247. doi: 10.1016/0165-2427(90)90047-v. [DOI] [PubMed] [Google Scholar]
  29. Magnusson U., Fossum C. Effect of estradiol 17b treatment of gilts on blood mononuclear cell functions in vitro. Am. J. Vet. Res. 1992;8:1427–1430. [PubMed] [Google Scholar]
  30. Meyer K. User Notes. Institute of Animal Genetics, Edinburgh University; West Mains Road, Edinburgh, UK: 1988. Programs to estimate variance components for individual animal models by restricted maximum likelihood (REML) [Google Scholar]
  31. Nowacki W., Cederblad B., Renard C., La Bonnardiere C., Charley B. Age-related increase of porcine natural interferon-α producing (NIP) cell frequency and of interferon yield per cell. Vet. Immunol. Immunopathol. 1993;37:113–122. doi: 10.1016/0165-2427(93)90059-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Quinn P.J. Mechanisms of action of some immunomodulators used in veterinary medicine. In: Blecha F., Charley B., editors. Vol. 35. Academic Press; San Diego: 1990. pp. 43–99. (Immunomodulators in Domestic Food Animals Adv. in Vet. Sci. and Comp. Med.). [DOI] [PubMed] [Google Scholar]
  33. Ray N.B.K., Cheung S.C., Rosztoczy I., Pitha P.M. Mouse genotype affects inducible expression of cytokine genes. J. Immunol. 1992;148:1934–1940. [PubMed] [Google Scholar]
  34. Rothschild M.F., Chen H.L., Christian L.L., Lie W.R., Venier L., Cooper M., Briggs C., Warner C.M. SLA complex and immune response. Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B. bronchiseptica. J. Anim. Sci. 1984;59:643–649. doi: 10.2527/jas1984.593643x. [DOI] [PubMed] [Google Scholar]
  35. Rothschild M.F., Hill H.T., Christian L.L., Warner C.M. Genetic differences in serum-neutralization titres of pigs after vaccination with pseudorabies modified live-virus vaccine. Am. J. Vet. Res. 1984;45:1216–1218. [PubMed] [Google Scholar]
  36. Rönnblom L., Ramstedt U., Alm G.V. Properties of human natural interferon-producing cells stimulated by tumor cell lines. Eur. J. Immunol. 1983;13:471–476. doi: 10.1002/eji.1830130608. [DOI] [PubMed] [Google Scholar]
  37. Sandberg K., Matsson P., Alm G.V. A distinct population of nonphagocytic and low level CD4+ null lymphocytes produce IFN-α after stimulation by Herpes Simplex Virus-infected cells. J. Immunol. 1990;145:1015–1020. [PubMed] [Google Scholar]
  38. SAS Institute . SAS Institute; Cary NR: 1985. SAS User's guide. [Google Scholar]
  39. Stern S., Johansson K., Rydhmer L., Andersson K. Performance testing of pigs for lean tissue growth rate in a selection experiment with low and high protein diets. I. Experimental design and efficiency of selection. Acta Agric. Scand. 1993;43 [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES