Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;71:87–95. doi: 10.1007/978-3-211-33328-0_10

Isatin, an endogenous MAO inhibitor, and a rat model of Parkinson’s disease induced by the Japanese encephalitis virus

M Minami 3,6,7, N Hamaue 3, M Hirafuji 3, H Saito 3, T Hiroshige 3, A Ogata 4, K Tashiro 4, S H Parvez 5
Editors: H Parvez1, P Riederer2
PMCID: PMC7120655  PMID: 17447419

Summary

A single dose of isatin (indole-2,3-dione)(i.p.), an endogenous MAO inhibitor, significantly increased norepinephrine and 5-hydroxytryptamine concentrations in the rat brain and also significantly increased acetylcholine and dopamine (DA) levels in the rat striatum. Urinary isatin concentrations in patients with Parkinson’s disease tend to increase according to the severity of disease. We have developed a rat model of Parkinson’s disease induced by the Japanese encephalitis virus (JEV). The distribution of the pathological lesions of JEV-rats resemble those found in Parkinson’s disease. Significant behavioral improvement was observed in JEV-rats after isatin, L-DOPA and selegiline administration using a pole test. Both isatin and selegiline prevented the decrease in striatum DA levels of JEV-rats. The increased turnover of DA (DOPAC/DA) induced by JEV was significantly inhibited by isatin, but not selegiline. These findings suggest that JEV-infected rats may serve as a model of Parkinson’s disease and that exogenously administered isatin and selegiline can improve JEV-induced parkinsonism by increasing DA concentrations in the striatum.

Keywords: Atrial Natriuretic Peptide, Japanese Encephalitis, Japanese Encephalitis Virus, Striatal Cholinergic Interneuron, Postencephalitic Parkinsonism

References

  1. Adams J.D., Odunze I.N. Oxygen free radicals and Parkinson’s disease. Free Radical Biol Med. 1991;10:161–169. doi: 10.1016/0891-5849(91)90009-R. [DOI] [PubMed] [Google Scholar]
  2. Alves R.S.C., Barbosa E.R., Scaff M. Postvaccinial parkinsonism. Movement Disorders. 1992;7:178–180. doi: 10.1002/mds.870070213. [DOI] [PubMed] [Google Scholar]
  3. Appel S.H., Le W.D., Tajti J., Haverkamp L.J., Engelhardt J.I. Nigral damage and dopaminergic hypofunction in mesencephalon-immunized guinea pigs. Ann Neurol. 1992;32:494–501. doi: 10.1002/ana.410320403. [DOI] [PubMed] [Google Scholar]
  4. Armando I., Barontini M., Levin G., Simsolo R., Glover V., Sandler M. Exercise increases endogenous urinary monoamine oxidase benzodiazepine receptor ligand inhibitory activity in normal children. J Auton Nerv Syst. 1984;11:95–100. doi: 10.1016/0165-1838(84)90011-0. [DOI] [PubMed] [Google Scholar]
  5. Armando I., Levin G., Barontini M. Stress increases endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in rat tissues. J Neural Transm. 1988;71:29–37. doi: 10.1007/BF01259407. [DOI] [PubMed] [Google Scholar]
  6. Battacharya S.K., Glover V., Sandler M., Clow A., Topham A., Bernadt M., Murray R. Raised endogenous monoamine oxidase inhibitor output in postwithdrawal alcoholics: effects of L-dopa and ethanol. Biol Psychiat. 1982;17:829–836. [PubMed] [Google Scholar]
  7. Battacharya S.K., Acharya S.B. Further investigations on the anxiogenic effects of isatin. Biog Amines. 1993;9:453–463. [Google Scholar]
  8. Battacharya S.K., Chakrabarti A., Sandler M., Glover V. Anxyolytic activity of intraventricularly administered atrial natriuretic peptide in the rat. Neuropsycho-pharmacol. 1996;15:199–206. doi: 10.1016/0893-133X(95)00204-Q. [DOI] [PubMed] [Google Scholar]
  9. Ballard P.A., Tetrud J.W., Langston J.W. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology. 1985;35:949–956. doi: 10.1212/wnl.35.7.949. [DOI] [PubMed] [Google Scholar]
  10. Bansal R.C., Kaur P., Kiran R. Mode of interaction of isatin with rat liver alkaline phosphatase. Res Bull (Science) PU Chandigarh. 1988;39:71–76. [Google Scholar]
  11. Berry M.D., Juorio A.V., Paterson I.A. Possible mechanisms of action of (−)deprenyl and other MAO-B inhibitors in some neurologic and psychiatric disorders. Prog Neurobiol. 1994;44:141–161. doi: 10.1016/0301-0082(94)90036-1. [DOI] [PubMed] [Google Scholar]
  12. Blaschko H. Amine oxidase. In: Boyer P.D., Lardy H., Myrback K., editors. The Enzymes. 3rd ed. New York: Academic Press; 1973. pp. 337–351. [Google Scholar]
  13. Bojinov S. Encephalitis with acute parkinsonian syndrome and bilateral inflammatory necrosis of the substantia nigra. J Neurol Sci. 1971;12:383–415. doi: 10.1016/0022-510X(71)90109-2. [DOI] [PubMed] [Google Scholar]
  14. Burns R.S., Chiueh C.C., Markey S.P., Ebert M.H., Jacobowitz D.M., Kopin I.J. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA. 1983;80:4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bursey M., Eichenbaum H. Conservation of hippocampal memory function in rats and humans. Nature. 1996;379:255–257. doi: 10.1038/379255a0. [DOI] [PubMed] [Google Scholar]
  16. Calne D.B., Langston J.W. Aetiology of Parkinson’s disease. Lancet. 1983;2:1457–1459. doi: 10.1016/S0140-6736(83)90802-4. [DOI] [PubMed] [Google Scholar]
  17. Chocholova L., Kolinova M. Effect of isatin on audiogenic seizures in rats and its relationship to electrographic and behavioral phenomena. Physiol Bohemoslov. 1979;28:495–502. [PubMed] [Google Scholar]
  18. Chocholova L., Kolinova M. Effect of isatin (2, 3 dioxyindoline) on physiological and pathological electrographic manifestations of vigilance. Physiol Bohemoslov. 1981;30:129–137. [PubMed] [Google Scholar]
  19. Clow A., Glover V., Armando I., Sandler M. New endogenous benzodiazepine receptor ligand in human urine: identity with endogenous MAO inhibitor? Life Sci. 1983;33:735–741. doi: 10.1016/0024-3205(83)90778-6. [DOI] [PubMed] [Google Scholar]
  20. Clow A., Glover V., Weg M.W., Walker P.L., Sheehan D.V., Carr D.B., Sandler M. Urinary catecholamine metabolite and tribulin output during lactate infusion. Br J Psychiatry. 1988;152:122–126. doi: 10.1192/bjp.152.1.122. [DOI] [PubMed] [Google Scholar]
  21. Clow A., Glover V., Sandler M., Tiller J. Increased urinary tribulin output in generalized anxiety disorder. Psychopharmacol. 1988;95:378–380. doi: 10.1007/BF00181951. [DOI] [PubMed] [Google Scholar]
  22. Cohen G. Monoamine oxidase, hydrogen peroxidase and Parkinson’s disease. Adv Neurol. 1986;45:119–125. [PubMed] [Google Scholar]
  23. Dexter D.T., Wells F.R., Lees A.J., Agid F., Agid Y., Jenner P., Marsden C.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem. 1989;52:1830–1836. doi: 10.1111/j.1471-4159.1989.tb07264.x. [DOI] [PubMed] [Google Scholar]
  24. Dickerson R.B., Newton J.R., Hansen J.E. Diagnosis and immediate prognosis of Japanese B encephalitis. Am J Med. 1952;12:277–288. doi: 10.1016/0002-9343(52)90356-2. [DOI] [PubMed] [Google Scholar]
  25. Duvoisin R.C., Yahr M.D. Encephalitis and parkinsonism. Arch Neurol. 1965;12:227–239. doi: 10.1001/archneur.1965.00460270003001. [DOI] [PubMed] [Google Scholar]
  26. Elsworth J.D., Dewar D., Glover V., Goodwin B.L., Clow A., Sandler M. Purification and characterization of tribulin, an endogenous inhibitor of monoamine oxidase and benzodiazepine receptor binding. J Neural Transm. 1986;67:45–56. doi: 10.1007/BF01243358. [DOI] [PubMed] [Google Scholar]
  27. Fishman P.S., Gass J.S., Swoveland P.T., Lavi E., Highkin M.K., Weiss S.R. Infection of the basal ganglia by a murine coronavirus. Science. 1985;229:877–879. doi: 10.1126/science.2992088. [DOI] [PubMed] [Google Scholar]
  28. Geddes J.F., Hughes A.J., Lees A.J., Daniel S.E. Pathological overlap in cases of parkinsonism associated with neurofibrillary tangles. A study of recent cases of postencephalitic parkinsonism and comparison with progressive supranuclear palsy and Guamanian parkinsonism-dementia complex. Brain. 1993;116:281–302. doi: 10.1093/brain/116.1.281. [DOI] [PubMed] [Google Scholar]
  29. Gerlach M., Youdim M.B., Riederer P. Pharmacology of selegiline. Neurology. 1996;47([Suppl 3]):S137–S145. doi: 10.1212/wnl.47.6_suppl_3.137s. [DOI] [PubMed] [Google Scholar]
  30. Gibb W.R.G., Lees A.J. The progression of idiopathic Parkinson’s disease is not explained by age-related changes. Clinical and pathological comparisons with post-encephalitic parkinsonian syndrome. Acta Neuropathol. 1987;73:195–201. doi: 10.1007/BF00693789. [DOI] [PubMed] [Google Scholar]
  31. Glover V., Reveley M.A., Sandler M. A monoamine oxidase inhibitor in human urine. Biochem Pharmacol. 1980;29:467–470. doi: 10.1016/0006-2952(80)90534-1. [DOI] [PubMed] [Google Scholar]
  32. Glover V., Halket J.M., Watkins P.J., Clow A., Goodwin B.L., Sandler M. Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J Neurochem. 1988;51:656–659. doi: 10.1111/j.1471-4159.1988.tb01089.x. [DOI] [PubMed] [Google Scholar]
  33. Glover V., Bhattacharya S.K., Sandler M. Isatin-a new biological factor. Indian J Exp Biol. 1991;29:1–5. [PubMed] [Google Scholar]
  34. Glover V., Clow A., Sandler M. Effects of dopaminergic drugs on superoxide dismutase: implications for senescence. J Neurol Transm. 1993;40([Suppl]):37–45. [PubMed] [Google Scholar]
  35. Glover V., Medvedev A., Sandler M. Isatin is a potent endogenous antagonist of guanylate cyclase-coupled atrial natriuretic peptide receptors. Life Sci. 1995;57:2073–2079. doi: 10.1016/0024-3205(95)02189-P. [DOI] [PubMed] [Google Scholar]
  36. Gorell J.M., Czarnecki B. Pharmacological evidence for direct dopaminergic regulation of striatal acetylcholine release. Life Sci. 1986;38:2239–2246. doi: 10.1016/0024-3205(86)90576-X. [DOI] [PubMed] [Google Scholar]
  37. Goto A. Follow-up study of Japanese B encephalitis. Psychiat Neurol Jpn. 1962;64:236–266. [PubMed] [Google Scholar]
  38. Hamaue N., Minami M., Kanamaru Y., Togashi M., Monma Y., Ishikura M., Mahara R., Yamazaki N., Togashi H., Saito H., Parvez S.H. Endogenous monoamine oxidase (MAO) inhibitor (tribulin-like activity) in the brain and urine of stroke-prone SHR. Biog Amines. 1992;8:401–412. [Google Scholar]
  39. Hamaue N., Minami M., Kanamaru Y., Ishikura M., Yamazaki N., Saito H., Parvez S.H. Identification of isatin, an endogenous MAO inhibitor, in the brain of stroke-prone SHR. Biog Amines. 1994;10:99–110. [Google Scholar]
  40. Hamaue N., Yamazaki N., Minami M., Endo T., Hirafuji M., Monma Y., Togashi H. Determination of isatin, an endogenous monoamine oxidase inhibitor, in urine and tissues of rats by HPLC. Gen Pharmacol. 1998;30:387–391. doi: 10.1016/S0306-3623(97)00274-7. [DOI] [PubMed] [Google Scholar]
  41. Hamaue N., Yamazaki N., Minami M., Endo T., Hirafuji M., Monma Y., Togashi H., Saito H., Parvez S.H. Effects of isatin, an endogenous MAO inhibitor, on acetylcholine and dopamine levels in the rat striatum. Biog Amines. 1999;15:367–377. [Google Scholar]
  42. Hamaue N., Minami M., Hirafuji M., Terado M., Machida M., Yamazaki N., Yoshioka M., Ogata A., Tashiro K. Isatin, an endogenous MAO inhibitor, as a new biological modulator. CNS Drug Rev. 1999;5:331–346. doi: 10.1111/j.1527-3458.1999.tb00109.x. [DOI] [Google Scholar]
  43. Hamaue N., Yamazaki N., Terado M., Minami M., Ohno K., Ide H., Ogata A., Honma S., Tashiro K. Urinary isatin concentrations in patients with Parkinson’s disease determined by a newly developed HPLC-UV method. Res Commun Mol Pathol Pharmacol. 2000;108:63–73. [PubMed] [Google Scholar]
  44. Hamaue N., Minami M., Terado M., Hirafuji M., Endo T., Machida M., Hiroshige T., Ogata A., Tashiro K., Saito H., Parvez S.H. Comparative study of the effects of isatin, an endogenous MAO-inhibitor, and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese encephalitis virus. NeuroToxicology. 2004;25:205–213. doi: 10.1016/S0161-813X(03)00100-1. [DOI] [PubMed] [Google Scholar]
  45. Hoehn M.M., Yarh M.D. Parkinsonism: onset, progression and mortality. Neurolol. 1967;17:427–442. doi: 10.1212/wnl.17.5.427. [DOI] [PubMed] [Google Scholar]
  46. Hota D., Acharya S.B. Studies on peripheral actions of isatin. Ind J Exp Biol. 1994;32:710–717. [PubMed] [Google Scholar]
  47. Hsu S.M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29:577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  48. Hudson A.J., Rice G.P.A. Similarities of Guamanian ALS/PD to postencephalitic parkinsonism/ALS: possible viral cause. Can J Neurol Sci. 1990;17:427–433. doi: 10.1017/s0317167100031024. [DOI] [PubMed] [Google Scholar]
  49. Imperato A., Obinu M.C., Casu A., Mascia S., Dazzi L., Gessa G.L. Evidence that neuroleptics increase striatal acetylcholine release though stimulation of dopamine D1 receptors. J Pharmacol Exp Ther. 1993;266:557–562. [PubMed] [Google Scholar]
  50. Jarman J., Przylorowska A., Glover V., Halket J., Davies P.T., Rose F.C., Sandler M. Urinary output of endogenous monoamine oxidase inhibitor and isatin during acute migraine attack. J Neural Transm Gen Sect. 1991;84:129–134. doi: 10.1007/BF01249116. [DOI] [PubMed] [Google Scholar]
  51. Johnson R.T., Burke D.S., Elwell M., Leake C.J., Nisalak A., Hoke C.H., Lorsomrudee W. Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann Neurol. 1985;18:567–573. doi: 10.1002/ana.410180510. [DOI] [PubMed] [Google Scholar]
  52. Knoll J. The possible mechanisms of action of (−)deprenyl in Parkinson’s disease. J Neural Transm. 1978;43:177–198. doi: 10.1007/BF01246955. [DOI] [PubMed] [Google Scholar]
  53. Kristensson K. Potential role of viruses in neuro-degeneration. Mol Chem Neuropathol. 1992;16:45–58. doi: 10.1007/BF03159960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kumar P., Dani H.M., Trehan S. Effect of isatin testicular hyaluronidase. Ind J Exp Biol. 1977;15:655–656. [PubMed] [Google Scholar]
  55. Kumar P., Bansal R.C., Mahmood A. Isatin, an inhibitor of acetylcholinesterase activity in rat brain. Biog Amines. 1993;9:281–289. [Google Scholar]
  56. Lehmann J., Langer S.Z. The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? Neurosci. 1983;10:1105–1120. doi: 10.1016/0306-4522(83)90102-1. [DOI] [PubMed] [Google Scholar]
  57. Matsumoto M., Togashi H., Yoshioka M., Hirokami M., Morii K., Saito H. Simultaneous high-performance liquid chromatographic determination of norepinephrine, serotonin, acetylcholine and their metabolites in the cerebrospinal fluid of anaesthetized normotensive rats. J Chromatogr. 1990;526:1–10. doi: 10.1016/s0378-4347(00)82478-0. [DOI] [PubMed] [Google Scholar]
  58. McIntyre I.M., Norman T.R. Serotonergic effects of isatin: an endogenous MAO inhibitor related to tribulin. J Neural Transm. 1990;79:35–40. doi: 10.1007/BF01250998. [DOI] [PubMed] [Google Scholar]
  59. McGeer P.L., Itagaki S., Akiyama H., McGeer E.G. Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol. 1988;24:574–576. doi: 10.1002/ana.410240415. [DOI] [PubMed] [Google Scholar]
  60. Medvedev A.E., Clow A., Sandler M., Glover V. Isatin: A link between natriuretic peptides and monoamines? Biochem Pharmacol. 1996;52:385–391. doi: 10.1016/0006-2952(96)00206-7. [DOI] [PubMed] [Google Scholar]
  61. Minami M., Senjo M., Togashi H., Yoshioka M., Saito H., Kawaguchi H., Takebayashi K., Parvez H. Kidney glutathione S-transferase activity and kidney monoamine oxidase activity in stroke cases of SHRSP. Biog Amines. 1988;5:517–526. [Google Scholar]
  62. Morita K., Tanaka M., Igarashi A. Rapid identification of dengue virus serotypes by using polymerase chain reaction. J Clin Microbiol. 1991;29:2107–2110. doi: 10.1128/jcm.29.10.2107-2110.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Muller M., Schramek J. Combined application of propranolol and local anesthetics: enhanced anticonvulsant action. Biomed Biochim Acta. 1989;4:333–336. [PubMed] [Google Scholar]
  64. Nagatsu T., Yoshida M. An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primate with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosci Lett. 1988;87:178–182. doi: 10.1016/0304-3940(88)90166-8. [DOI] [PubMed] [Google Scholar]
  65. Nilsson O.G., Leanza G., Bjkölund A. Acetylcholine release in the hippocampus: regulation by monoaminergic afferents as assessed by in vivo microdialysis. Brain Res. 1992;584:132–140. doi: 10.1016/0006-8993(92)90886-E. [DOI] [PubMed] [Google Scholar]
  66. Ogata A., Nagashima K., Hall W.W., Ichikawa M., Kimura-Kuroda J., Yasui K. Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. J Virol. 1991;65:880–886. doi: 10.1128/jvi.65.2.880-886.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Ogata A., Tashiro K., Nukuzuma S., Nagashima K., Hall W.W. A rat model of Parkinson’s disease induced by Japanese encephalitis virus. J Neurol Virol. 1997;3:141–147. doi: 10.3109/13550289709015803. [DOI] [PubMed] [Google Scholar]
  68. Ogata A., Nagashima K., Yasui K., Matsuura T., Tashiro K. Sustained release dosage of thyrotropin-releasing hormone improves experimental Japanese encephalitis virus-induced parkinsonism in rats. J Neurol Sci. 1998;159:135–139. doi: 10.1016/S0022-510X(98)00150-6. [DOI] [PubMed] [Google Scholar]
  69. Ogata A., Hamaue N., Terado M., Minami M., Nagashima K., Tashiro K. Isatin, an endogenous MAO inhibitor, improves bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by Japanese encephalitis virus. J Neurol Sci. 2003;206:79–83. doi: 10.1016/S0022-510X(02)00342-8. [DOI] [PubMed] [Google Scholar]
  70. Ogata A., Hamaue N., Minami M., Yabe I., Kikuchi S., Sasaki H., Tashiro K. Post-encephalitis parkinsonism: clinical features and experimental model. Biog Amines. 2004;18:339–347. doi: 10.1163/1569391041501979. [DOI] [Google Scholar]
  71. Ogawa N., Hirose Y., Ohara S., Ono T., Watanabe Y. A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmaco. 1985;50:435–441. [PubMed] [Google Scholar]
  72. Ohue T., Koshimura K., Akiyama Y., Ito A., Kido T., Takagi Y., Miwa S. Regulation of acetylcholine release in vivo from rat hippocampus by monoamines as revealed by novel column-switching HPLC with electrochemical detection. Brain Res. 1992;572:340–344. doi: 10.1016/0006-8993(92)90497-W. [DOI] [PubMed] [Google Scholar]
  73. Oxenkrug G., McIntyre I. Stress-induced synthesis of melatonin; possible involvement of the endogenous monoamine oxidase inhibitor (tribulin) Life Sci. 1985;37:1743–1746. doi: 10.1016/0024-3205(85)90303-0. [DOI] [PubMed] [Google Scholar]
  74. Parvez H., Parvez S. The effects of metopirone and adrenectomy on the regulation of the enzymes monoamine oxidase and catechol-O-methyl transferase in different brain regions. J Neurochem. 1973;20:1011–1020. doi: 10.1111/j.1471-4159.1973.tb00072.x. [DOI] [PubMed] [Google Scholar]
  75. Paxinos G., Wason C. The rat brain in stereotaxic coordinates. 2nd ed. New York: Academic Press Inc; 1980. [DOI] [PubMed] [Google Scholar]
  76. Peturson H., Bhattacharya S.K., Glover V., Sandler M., Lader M.H. Urinary monoamine oxidase inhibitor and benzodiazepine withdrawal. Br J Psychiat. 1982;140:7–10. doi: 10.1192/bjp.140.1.7. [DOI] [PubMed] [Google Scholar]
  77. Riederer P., Sotic E., Rausch W.D., Schmidt B., Reynolds G.P., Jellinger K., Youdim M.B. Transition metals ferritin, glutathione and ascorbic acid in Parkinsonian brain. J Neurochem. 1989;52:515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. [DOI] [PubMed] [Google Scholar]
  78. Sandler M. The emergence of tribulin. Trends Pharmacol Sci. 1982;3:471–472. doi: 10.1016/0165-6147(82)91243-3. [DOI] [Google Scholar]
  79. Scatton B. Further evidence for the involvement of D2, but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission. Life Sci. 1992;31:2883–2890. doi: 10.1016/0024-3205(82)90679-8. [DOI] [PubMed] [Google Scholar]
  80. Sethy V.H., van Woert M.H. Regulation of striatal acetylcholine concentration by dopamine receptors. Nature. 1974;251:529–530. doi: 10.1038/251529a0. [DOI] [PubMed] [Google Scholar]
  81. Shoji H., Watanabe M., Itoh S., Kuwahara H., Hattori F. Japanese encephalitis and parkinsonism. J Neurol. 1993;240:59–60. doi: 10.1007/BF00838449. [DOI] [PubMed] [Google Scholar]
  82. Singh B., Sharma R., Sareen K., Sareen K.N., Sohal M.S. Isatin enzyme interaction V. Activation of rat liver acid phosphatase. Enzyme. 1977;22:256–261. [PubMed] [Google Scholar]
  83. Stadler H., Lloyd K.G., Gadea-Ciria M., Bartholini G. Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res. 1973;55:476–480. doi: 10.1016/0006-8993(73)90317-X. [DOI] [PubMed] [Google Scholar]
  84. Stoof J.C., Drukarch B., DeBoer P., Westerink B.H.C., Groenewegen H.J. Regulation of the activity of striatal cholinergic neurons by L-DOPA. Neurosci. 1992;47:755–770. doi: 10.1016/0306-4522(92)90027-Y. [DOI] [PubMed] [Google Scholar]
  85. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology. 1987;161:497–510. doi: 10.1016/0042-6822(87)90144-9. [DOI] [PubMed] [Google Scholar]
  86. Susheela I., Singh B., Dani H.M., Amma M.K.P., Sareen K. Enzyme inhibition by isatin I. Inhibition of rat liver xanthine oxidase. Enzymol. 1969;37:325–334. [PubMed] [Google Scholar]
  87. Takahashi M., Yamada T., Nakajima S., Nakajima K., Yamamoto T., Okada H. The substantia nigra is a major target for neurovirulent influenza A virus. J Exp Med. 1995;181:2161–2169. doi: 10.1084/jem.181.6.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Tipton K.F., Housy M.D., Mantle T.J. The nature and locations of the multiple forms of monoamine oxidase. In: Mary L.C., editor. Monoamine oxidase: its inhibition. New York: Elsevier; 1976. pp. 5–31. [Google Scholar]
  89. Tozawa Y., Ueki A., Manabe S., Matsushima K. Stress-induced increase in urinary isatin excretion in rats: reversal by both dexamethasone and α-methyl-p-tyrosine. Biochem Pharmacol. 1998;56:1041–1046. doi: 10.1016/S0006-2952(98)00199-3. [DOI] [PubMed] [Google Scholar]
  90. Ueki A., Willoughby J., Glover V., Sandler M., Stibbe K., Stern G.M. Endogenous urinary monoamine oxidase inhibitor excretion in Parkinson’s disease and other neurological disorders. J Neural Transm. 1989;1:263–268. doi: 10.1007/BF02263480. [DOI] [PubMed] [Google Scholar]
  91. Von Economo C. Encephalitis lethargica. Wien klin Wschr. 1917;30:581–585. [Google Scholar]
  92. Walters J.H. Post-encephalitic parkinson syndrome after meningoencephalitis due to coxsackie virus group B, type 2. New Eng J Med. 1960;263:744–747. doi: 10.1056/NEJM196010132631507. [DOI] [Google Scholar]
  93. Wedzong K., Limberger N., Spath L., Wichman T., Stare K. Acethylcholine release in rat nucleus accumbens is regulated though dopamine D2-receptor. Naunym-Schmied Arch Pharmacol. 1988;338:250–255. doi: 10.1007/BF00173396. [DOI] [PubMed] [Google Scholar]
  94. Yahr M.D. Encephalitis lethargica (Von Economo’s disease, epidemic encephalitis) In: Vinken P.J., Bruyn G.W., editors. Handbook of clinical neurology. Amsterdam: Elsevier; 1978. pp. 451–457. [Google Scholar]
  95. Yang H.Y.T., Neff N.H. The monoamine oxidases of brain: selective inhibition with drugs and the consequences for the metabolism of the biogenic amines. J Pharmacol Exp Ther. 1974;189:733–740. [PubMed] [Google Scholar]
  96. Yoshida M., Miwa T., Nagatsu T. Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahy droisoquinoline: the behavioral and biochemical changes. Neurosci Lett. 1990;119:109–113. doi: 10.1016/0304-3940(90)90768-5. [DOI] [PubMed] [Google Scholar]
  97. Yumiler A. The effect of isatin (tribulin) on metabolism of indoles in the rat brain and pineal: in vitro and pineal: in vitro and in vivo studies. Neurochem Res. 1990;15:95–100. doi: 10.1007/BF00969190. [DOI] [PubMed] [Google Scholar]

Articles from Oxidative Stress and Neuroprotection are provided here courtesy of Nature Publishing Group

RESOURCES