Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;296:1–17. doi: 10.1007/3-540-30791-5_1

Molecular Mimicry, Microbial Infection, and Autoimmune Disease: Evolution of the Concept

M B A Oldstone 2
Editor: Michael BA Oldstone1
PMCID: PMC7120699  PMID: 16329189

Abstract

Molecular mimicry is defined as similar structures shared by molecules from dissimilar genes or by their protein products. Either several linear amino acids or their conformational fit may be shared, even though their origins are separate. Hence, during a viral or microbe infection, if that organism shares cross-reactive epitopes for B or T cells with the host, then the response to the infecting agent will also attack the host, causing autoimmune disease. A variation on this theme is when a second, third, or repeated infection(s) shares cross-reactive B or T cell epitopes with the first (initiating) virus but not necessarily the host. In this instance, the secondary infectious agents increase the number of antiviral/antihost effector antibodies or T cells that potentiate or precipitate the autoimmune assault. The formation of this concept initially via study of monoclonal antibody or clone T cell cross-recognition in vitro through its evolution to in vivo animal models and to selected human diseases is explored in this mini-review.

Keywords: Ankylose Spondylitis, Experimental Autoimmune Encephalomyelitis, Myelin Basic Protein, Molecular Mimicry, Encephalitogenic Site

Contributor Information

Michael B.A. Oldstone, Email: mbaobo@scripps.edu

M. B. A. Oldstone, Email: mbaobo@scripps.edu

References

  1. Atkinson M.A., Bowman M.A., Campbell L., Darrow B.L., Kaufman D.L., MacLaren N.K. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994;94:2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science. 1999;283:1335–1339. doi: 10.1126/science.283.5406.1335. [DOI] [PubMed] [Google Scholar]
  3. Brewerton D., Caffrey M., Hart F., James D., Nichols A., Sturrock R. Ankylosing spondylitis and HLA B27. Lancet. 1973;i:904–907. doi: 10.1016/s0140-6736(73)91360-3. [DOI] [PubMed] [Google Scholar]
  4. Cunningham M.W. T cell mimicry in inflammatory heart disease. Mol Immunol. 2004;40:1121–1127. doi: 10.1016/j.molimm.2003.11.023. [DOI] [PubMed] [Google Scholar]
  5. Cunningham M.W., Fujinami R.S., editors. Molecular mimicry. Washington DC: ASM Press; 2000. [Google Scholar]
  6. Dales S., Fujinami R.S., Oldstone M.B.A. Serologic relatedness between Thy1.2 and actin revealed by monoclonal antibody. J Immunol. 1983;131:1332–1338. [PubMed] [Google Scholar]
  7. Dales S., Fujinami R.S., Oldstone M.B.A. Infection with vaccinia favors the selection of hybridomas synthesizing auto-antibodies against intermediate filaments, among them one cross-reacting with the virus hemagglutinin. J Immunol. 1983;131:1546–1553. [PubMed] [Google Scholar]
  8. Dell A., Antone S.M., Gauntt C.J., Crossley C.A., Clark W.A., Cunningham M.W. Autoimmune determinants of rheumatic carditis: localization of epitopes in human cardiac myosin. Eur Heart J. 1991;12:158–162. doi: 10.1093/eurheartj/12.suppl_d.158. [DOI] [PubMed] [Google Scholar]
  9. Dixon F.J. The role of antigen antibody complexes in disease. Harvey Lecture. 1963;58:21–52. [PubMed] [Google Scholar]
  10. Dyrberg T., Oldstone M.B.A. Peptides as probes to study molecular mimicry and virus-induced autoimmunity. Curr Topics Microbiol Immunol. 1986;130:25–37. doi: 10.1007/978-3-642-71440-5_3. [DOI] [PubMed] [Google Scholar]
  11. Dyrberg T., Petersen J.S., Oldstone M.B.A. Immunological cross-reactivity between mimicking epitopes on a virus protein and a human autoantigen depends on a single amino acid residue. Clin Immunol Immunopathol. 1990;54:290–297. doi: 10.1016/0090-1229(90)90090-D. [DOI] [PubMed] [Google Scholar]
  12. Eastmond C.J., Woodrow J.C. Discordance for ankylosing spondylitis in monozygotic twins. Ann Rheum Dis. 1977;36:360. doi: 10.1136/ard.36.4.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ebers G., Bulman D., Sadovnik A., Paty D.W., Warren S., Hader W., Murray T.J., Seland T.P., Duquette P., Grey T., et al. A population-based study of multiple sclerosis in twins. N Engl J Med. 1987;315:1638–1642. doi: 10.1056/NEJM198612253152603. [DOI] [PubMed] [Google Scholar]
  14. Froude J., Gibofsky A., Buskirk D.R., Khana A., Zabriskie J.B. Reactivity between streptococcus and human tissue. Curr Topics Microbiol Immunol. 1989;145:5–26. doi: 10.1007/978-3-642-74594-2_2. [DOI] [PubMed] [Google Scholar]
  15. Fujinami R.S., Oldstone M.B.A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: Mechanism for autoimmunity. Science. 1985;230:1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  16. Fujinami R.S., Oldstone M.B.A., Wroblewska Z., Frankel M.E., Koprowski H. Molecular mimicry in virus infection: cross-reaction of measles phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci USA. 1983;80:2346–2350. doi: 10.1073/pnas.80.8.2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gamble D.R. The epidemiology of insulin-dependent diabetes with particular reference to the relationship of virus infection to its etiology. Epidemiol Rev. 1980;2:49–70. doi: 10.1093/oxfordjournals.epirev.a036226. [DOI] [PubMed] [Google Scholar]
  18. Gilliland B., Mannik M. Ankylosing spondylitis and Reiter’s syndrome (pp 1986–1988) and rheumatoid arthritis (pp 1977–1986) In: Harrison T.R., editor. Harrison’s Principles of Internal Medicine. 10th Edition. New York: McGraw Hill; 1986. [Google Scholar]
  19. Green A. The role of genetic factors in development of IDDM. Curr Topics Microbiol Immunol. 1990;164:3–17. doi: 10.1007/978-3-642-75741-9_1. [DOI] [PubMed] [Google Scholar]
  20. Hafer-Macko C., Hsieh S.T., Li C.Y., Ho T.W., Sheikh K., Cornblath D.R., McKhann G.M., Asbury A.K., Griffin J.W. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol. 1996;40:635–644. doi: 10.1002/ana.410400414. [DOI] [PubMed] [Google Scholar]
  21. Hammer R.E., Maika S.D., Richardson J.A., Tang J.P., Taurog J.D. Spontaneous inflammatory disease in transgenic mice expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell. 1990;63:1099–1112. doi: 10.1016/0092-8674(90)90512-D. [DOI] [PubMed] [Google Scholar]
  22. Honeyman M.C., Stone N.L., Harrison L.C. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med. 1998;4:231–239. [PMC free article] [PubMed] [Google Scholar]
  23. Hudrisier D., Riond J., Burlet-Schiltz O., von Herrath M.B., Lewicki H., Monsarrat B., Oldstone M.B.A., Gairin J.E. Structural and functional identification of major histocompatibility complex class I-restricted self-peptides as naturally occurring molecular mimics of viral antigens. J Biol Chem. 2001;276:19396–19403. doi: 10.1074/jbc.M008864200. [DOI] [PubMed] [Google Scholar]
  24. Jury K.M., Loeffler D., Eiermann T.H., Ziegler B., Boehm B.O., Richter W. Evidence for somatic mutation and affinity maturation of diabetes associated human autoantibodies to glutamate decarboxylase. J Autoimmun. 1996;9:371–377. doi: 10.1006/jaut.1996.0050. [DOI] [PubMed] [Google Scholar]
  25. Kaplan M.H. Immunologic reactivity of streptococcal and tissue antigens. J Immunol. 1963;90:595–606. [PubMed] [Google Scholar]
  26. Khare S.D., Luthra H.S., David C.S. Role of HLA-B27 in spondyloarthropathies. Curr Topics Microbiol Immunol. 1996;206:85–97. doi: 10.1007/978-3-642-85208-4_6. [DOI] [PubMed] [Google Scholar]
  27. Kurtzke J.F. Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev. 1993;6:382–427. doi: 10.1128/cmr.6.4.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LaFace D.M., Vestberg M., Yang Y., Srivastava R., Di Santo J., Flomenberg N., Brown S., Sherman L.A., Peterson P.A. Human CD8 transgene regulation of HLA recognition by murine T cells. J Exp Med. 1995;182:1315–1325. doi: 10.1084/jem.182.5.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lane D.P., Hoeffler W.K. SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature. 1980;288:167–170. doi: 10.1038/288167a0. [DOI] [PubMed] [Google Scholar]
  30. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998;19:395–404. doi: 10.1016/S0167-5699(98)01299-7. [DOI] [PubMed] [Google Scholar]
  31. Merriman T.R., Todd J.A. Genetics of autoimmune disease. Curr Opin Immunol. 1995;7:786–792. doi: 10.1016/0952-7915(95)80049-2. [DOI] [PubMed] [Google Scholar]
  32. Notkins A.L., Yoon J.W. Virus-induced diabetes mellitus. In: Notkins A.L., Oldstone M.B.A., editors. Concepts in Viral Pathogenesis. New York: Springer-Verlag; 1984. pp. 241–247. [Google Scholar]
  33. Oldstone M.B.A. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  34. Oldstone MBA (ed) (1989) Molecular mimicry. Curr Topics Microbiol Immunol, Vol. 145 [DOI] [PubMed]
  35. Oldstone M.B.A. Molecular mimicry and immune-mediated diseases. FASEB J. 1998;12:1255–1265. doi: 10.1096/fasebj.12.13.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oldstone M.B.A., von Herrath M., Lewicki H., Hudrisier D., Whitton J.L., Gairin J.E. Use of a high-affinity peptide that aborts MHC-restricted cytotoxic T lymphocyte activity against multiple viruses in vitro and virus-induced immunopathologic disease in vivo. Virology. 1999;256:246–257. doi: 10.1006/viro.1998.9593. [DOI] [PubMed] [Google Scholar]
  37. Panitch H.S. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol. 1994;36:S25. doi: 10.1002/ana.410360709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rath H.C., Herfarth H.H., Ikeda J.S., Grenther W.B., Hamm T.E., Jr, Balish E., Taurog J.D., Hammer R.E., Wilson K.H., Sartor R.B. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rates. J Clin Invest. 1996;98:945–953. doi: 10.1172/JCI118878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwimmbeck P., Oldstone M.B.A. Klebsiella pneumoniae and HLA B27 associated diseases of Reiter’s syndrome and ankylosing spondylitis. Curr Topics Microbiol Immunol. 1989;145:45–67. doi: 10.1007/978-3-642-74594-2_4. [DOI] [PubMed] [Google Scholar]
  40. Schwimmbeck P.L., Dyrberg T., Drachman D., Oldstone M.B.A. Molecular mimicry and myasthenia gravis: An autoantigenic site of the acetylcholine receptor α-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest. 1989;84:1174–1180. doi: 10.1172/JCI114282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schwimmbeck P.L., Yu D.T.Y., Oldstone M.B.A. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter’s syndrome: Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J Exp Med. 1987;166:173–181. doi: 10.1084/jem.166.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shrinivasappa J., Saegusa J., Prabhakar B., Gentry M., Buchmeier M., Wiktor T., Koprowski H., Oldstone M., Notkins A. Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol. 1986;57:397–401. doi: 10.1128/jvi.57.1.397-401.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taurog J.D., Richardson J.A., Croft J.T., Simmons W.A., Zhou M., Fernandez-Sueiro J.L., Balish E., Hammer R.E. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic mice. J Exp Med. 1994;180:2359–2364. doi: 10.1084/jem.180.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Theofilopoulos A. The basis of autoimmunity. II. Genetic predisposition. Immunol Today. 1995;16:150–159. doi: 10.1016/0167-5699(95)80133-2. [DOI] [PubMed] [Google Scholar]
  45. Tishon A., LaFace D.M., Lewicki H., van Binnendijk R.S., Osterhaus A., Oldstone M.B.A. Transgenic mice expressing human HLA and CD8 molecules generate HLA-restricted measles virus cytotoxic T lymphocytes of the same specificity as humans with natural measles virus infection. Virology. 2000;275:286–293. doi: 10.1006/viro.2000.0517. [DOI] [PubMed] [Google Scholar]
  46. Tonietti G., Oldstone M.B.A., Dixon F.J. The effect of induced chronic viral infections on the immunologic diseases of New Zealand mice. J Exp Med. 1970;132:89–109. doi: 10.1084/jem.132.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wucherpfennig K.W., Strominger J.L. Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T-cell clones specific for myelin basic protein. Cell. 1995;80:695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yoon J.W., Austin M., Onodera T., Notkins A.L. Virus-induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1989;300:1173–1179. doi: 10.1056/NEJM197905243002102. [DOI] [PubMed] [Google Scholar]
  49. Yuki N., Susuki K., Koga M., Nishimoto Y., Odaka M., Hirata K., Taguchi K., Miyatake T., Furukawa K., Kobata T., Yamada M. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci USA. 2004;101:11404–11409. doi: 10.1073/pnas.0402391101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhao Z.S., Granucci F., Yeh L., Schaffer P., Cantor H. Molecular mimicry by herpes simplex virus type 1: autoimmune disease after viral infection. Science. 1997;79:1344–1347. doi: 10.1126/science.279.5355.1344. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Mimicry: Infection-Inducing Autoimmune Disease are provided here courtesy of Nature Publishing Group

RESOURCES