Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;173:261–287. doi: 10.1007/3-540-27262-3_13

Oligonucleotide-Based Antiviral Strategies

S Schubert §, J Kurreck §
Editors: Volker Erdmann7, Jan Barciszewski8, Jürgen Brosius9
PMCID: PMC7120703  PMID: 16594620

Abstract

In the age of extensive global traffic systems, the close neighborhood of man and livestock in some regions of the world, as well as inadequate prevention measures and medical care in poorer countries, greatly facilitates the emergence and dissemination of new virus strains. The appearance of avian influenza viruses that can infect humans, the spread of the severe acute respiratory syndrome (SARS) virus, and the unprecedented raging of human immunodeficiency virus (HIV) illustrate the threat of a global virus pandemic. In addition, viruses like hepatitis B and C claim more than one million lives every year for want of efficient therapy. Thus, new approaches to prevent virus propagation are urgently needed. Antisense strategies are considered a very attractive means of inhibiting viral replication, as oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The ensuing targeted destruction of viral RNA should interfere with viral replication without entailing negative effects on ongoing cellular processes. In this review, we will give some examples of the employment of antisense oligonucleotides, ribozymes, and RNA interference strategies for antiviral purposes. Currently, in spite of encouraging results in preclinical studies, only a few antisense oligonucleotides and ribozymes have turned out to be efficient antiviral compounds in clinical trials. The advent of RNA interference now seems to be refueling hopes for decisive progress in the field of therapeutic employment of antisense strategies.

Keywords: Antisense oligonucleotides, Antiviral agents, Ribozymes, RNA interference, RNAi

Contributor Information

Volker Erdmann, Email: erdmann@chemie.fu-berlin.de.

Jan Barciszewski, Email: jan.barciszewski@ibch.poznan.pl.

Jürgen Brosius, Email: brosius@pop.uni-muenster.de.

J. Kurreck, Email: jkurreck@chemie.fu-berlin.de

References

  1. Agrawal S., Kandimalla E.R. Antisense and siRNA as agonists of toll-like receptors. Nat Biotechnol. 2004;22:1533–1537. doi: 10.1038/nbt1042. [DOI] [PubMed] [Google Scholar]
  2. Arias F., Dector M.A., Segovia L., Lopez T., Camacho M., Isa P., Espinosa R., Lopez S. RNA silencing of rotavirus gene expression. Virus Res. 2004;102:43–51. doi: 10.1016/j.virusres.2004.01.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arteaga H.J., Hinkula J., van Dijk-Härd I., Dilber M.S., Wahren B., Christensson B., Mohamed A.J., Smith C.I.E. Choosing CCR5 or Rev siRNA in HIV-1. Nat Biotechnol. 2003;21:230–231. doi: 10.1038/nbt0303-230. [DOI] [PubMed] [Google Scholar]
  4. Arzumanov A., Walsh A.P., Rajwanshi V.K., Kumar R., Wengel J., Gait M.J. Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry. 2001;40:14645–14654. doi: 10.1021/bi011279e. [DOI] [PubMed] [Google Scholar]
  5. Bai J., Banda N., Lee N.S., Rossi J., Akkina R. RNA-based anti-HIV gene therapeutic constructs in SCID-hu mouse model. Mol Ther. 2002;6:770–782. doi: 10.1006/mthe.2002.0800. [DOI] [PubMed] [Google Scholar]
  6. Banerjea A., Li M.-J., Bauer G., Remling L., Lee N.-S., Rossi J., Akkina R. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. Mol Ther. 2003;8:62–71. doi: 10.1016/S1525-0016(03)00140-0. [DOI] [PubMed] [Google Scholar]
  7. Barik S. Control of nonsegmented negative-stand RNA virus replication by siRNA. Virus Res. 2004;102:27–35. doi: 10.1016/j.virusres.2004.01.012. [DOI] [PubMed] [Google Scholar]
  8. Beigelman L., McSwiggen J.A., Draper K.G., Gonzalez C., Jensen K., Karpeisky A.M., Modak A.S., Matulic-Adamic J., DiRenzo A.B., Haeberli P., Sweedler D., Tracz D., Grimm S., Wincott F.E., Thackaray V.G., Usman N. Chemical modification of hammerhead ribozymes. JBiol Chem. 1995;270:25702–25708. doi: 10.1074/jbc.270.43.25702. [DOI] [PubMed] [Google Scholar]
  9. Bitko V., Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol. 2001;1:34. doi: 10.1186/1471-2180-1-34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bitko V., Musiyenko A., Shulyayeva O., Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11:50–55. doi: 10.1038/nm1164. [DOI] [PubMed] [Google Scholar]
  11. Boden D., Pusch O., Lee F., Tucker L., Ramratnam B. Human immunodeficiency virus type 1 escapes from RNA interference. J Virol. 2003;77:11531–11535. doi: 10.1128/JVI.77.21.11531-11535.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bridge A.J., Pebemard S., Ducraux A., Nicoulaz L., Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34:263–264. doi: 10.1038/ng1173. [DOI] [PubMed] [Google Scholar]
  13. Brummelkamp T.R., Bernards R., Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553. doi: 10.1126/science.1068999. [DOI] [PubMed] [Google Scholar]
  14. Coburn G.A., Cullen B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol. 2002;76:9225–9231. doi: 10.1128/JVI.76.18.9225-9231.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crooke S.T. Progress in antisense technology. Annu Rev Med. 2004;55:61–95. doi: 10.1146/annurev.med.55.091902.104408. [DOI] [PubMed] [Google Scholar]
  16. Darfeuille F., Hansen J.B., Orum H., Di Primo C., Toulme J.-J. LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res. 2004;32:3101–3107. doi: 10.1093/nar/gkh636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madiredjo M., Bernards R., Berkhout B. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004;78:2601–2605. doi: 10.1128/JVI.78.5.2601-2605.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. De Beuckelaer A, Fürste J-P, Gruszecka M, Wittmann-Liebold B, Erdmann VA (1999) Selection of RNA aptamers that bind to a peptide of the canyon region of human rhinovirus 14. In: Wagner E et al. (eds) Proceedings of the International Congress on Endocytobiology, Symbiosis and Biomedicine, Freiburg im Breisgau, Germany, 5–9 April 1998, Endocytobiology, VII. “From Symbiosis to Eukaryotism”. Freiburg, pp 565–577
  19. De Clercq E. Antivirals and antiviral strategies. Nat Rev Microbiol. 2004;2:704–720. doi: 10.1038/nrmicro975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Doench J.G., Sharp P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18:504–511. doi: 10.1101/gad.1184404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dorsett Y., Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004;3:318–329. doi: 10.1038/nrd1345. [DOI] [PubMed] [Google Scholar]
  22. Doudna J.A., Cech T.R. The chemical repertoire of natural ribozymes. Nature. 2002;418:222–228. doi: 10.1038/418222a. [DOI] [PubMed] [Google Scholar]
  23. Eckstein F. Phosphorothioate oligonucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000;10:117–121. doi: 10.1089/oli.1.2000.10.117. [DOI] [PubMed] [Google Scholar]
  24. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  25. Elmén J., Zhang H.-Y., Zuber B., Ljungberg K., Wahren B., Wahlestedt C., Liang Z. Locked nucleic acids containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett. 2004;578:285–290. doi: 10.1016/j.febslet.2004.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Enserink M. Looking the pandemic in the eye. Science. 2004;306:392–394. doi: 10.1126/science.306.5695.392. [DOI] [PubMed] [Google Scholar]
  27. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  28. Ge Q., McManus M.T., Nguyen T., Shen C.-H., Sharp P.A., Eisen H.N., Chen J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral transcription. Proc Natl Acad Sci USA. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. Inhibition of influenza virus productionin virus-infected mice by RNA interference. Proc Natl Acad Sci USA. 2004;101:8676–8681. doi: 10.1073/pnas.0402486101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gitlin L., Karelsky S., Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature. 2002;418:430–434. doi: 10.1038/nature00873. [DOI] [PubMed] [Google Scholar]
  31. Goila R., Banerjea A. Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by a DNA-enzyme. FEBS Lett. 1998;435:233–238. doi: 10.1016/s0014-5793(98)01137-5. [DOI] [PubMed] [Google Scholar]
  32. Grunweller A., Wyszko E., Bieber B., Jahnel R., Erdmann V.A., Kurreck J. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′O-methyl RNA, phosphorothioates and siRNA. Nucleic Acids Res. 2003;31:3185–3193. doi: 10.1093/nar/gkg409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Haasnoot P.C.J., Cupac D., Berkhout B. Inhibition of virus replication by RNA interference. J Biomed Sci. 2003;10:607–616. doi: 10.1007/BF02256311. [DOI] [PubMed] [Google Scholar]
  34. Haley B., Zamore P.D. Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol. 2004;11:599–606. doi: 10.1038/nsmb780. [DOI] [PubMed] [Google Scholar]
  35. Hannon G.J., Rossi J.J. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–377. doi: 10.1038/nature02870. [DOI] [PubMed] [Google Scholar]
  36. Hu W.-Y., Myers C.P., Kilzer J.M., Pfaff S.L., Bushman F.D. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol. 2002;12:1301–1311. doi: 10.1016/S0960-9822(02)00975-2. [DOI] [PubMed] [Google Scholar]
  37. Jackson A.L., Bartz S.R., Schelter J., Kobayashi S.V., Burchard J., Mao M., Li B., Cavet G., Linsey P.S. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–637. doi: 10.1038/nbt831. [DOI] [PubMed] [Google Scholar]
  38. Jacque J.-M., Triques K., Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature. 2002;418:435–438. doi: 10.1038/nature00896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Jepsen J.S., Wengel J. LNA-antisense rivals siRNA for gene silencing. Curr Opin Drug Discov Devel. 2004;7:188–194. [PubMed] [Google Scholar]
  40. Jing N., Xu X. Rational drug design of DNA oligonucleotides as HIV inhibitors. Curr Drug Targets. 2001;1:79–90. doi: 10.2174/1568005013343173. [DOI] [PubMed] [Google Scholar]
  41. Khvorova A., Lescoute A., Westhof E., Jayasena S.D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol. 2003;10:708–712. doi: 10.1038/nsb959. [DOI] [PubMed] [Google Scholar]
  42. Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216. doi: 10.1016/s0092-8674(03)00801-8. [DOI] [PubMed] [Google Scholar]
  43. Klein C., Bock C.T., Wedemeyer H., Wustefeld T., Locarnini S., Dienes H.P., Kubicka S., Manns M.P., Trautwein C. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003;125:9–18. doi: 10.1016/S0016-5085(03)00720-0. [DOI] [PubMed] [Google Scholar]
  44. Kretschmer-Kazemi Far R., Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 2003;31:4417–4424. doi: 10.1093/nar/gkg649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kühl U., Pauschinger M., Schwimmbeck P.L., Seeberg B., Lober C., Noutsias M., Poller W., Schultheiss H.-P. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation. 2003;107:2793–2798. doi: 10.1161/01.CIR.0000072766.67150.51. [DOI] [PubMed] [Google Scholar]
  46. Kurreck J. Antisense technologies: improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–1644. doi: 10.1046/j.1432-1033.2003.03555.x. [DOI] [PubMed] [Google Scholar]
  47. Kurreck J., Wyszko E., Gillen C., Erdmann V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30:1911–1918. doi: 10.1093/nar/30.9.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Levin A.A. A review of issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999;1489:69–84. doi: 10.1016/s0167-4781(99)00140-2. [DOI] [PubMed] [Google Scholar]
  49. Macejak D., Jensen K.L., Jamison S., Domenico K., Roberts E.C., Chaudhary N., von Carlowitz I., Bellon L., Tong M.J., Conrad A., Pavco P.A., Blatt L.M. Inhibition of Hepatitis C Virus (HCV)-RNA-dependent translation and replication of a chimeric HCV Poliovirus using synthetic stabilized ribozymes. Hepatology. 2000;31:769–776. doi: 10.1002/hep.510310331. [DOI] [PubMed] [Google Scholar]
  50. Martinand-Mari C., Lebleu B., Robbins I. Oligonucleotide-based strategies to inhibit human hepatitis C virus. Oligonucleotides. 2003;13:539–548. doi: 10.1089/154545703322860834. [DOI] [PubMed] [Google Scholar]
  51. McCaffrey A.P., Meuse L., Pham T.T., Conklin D.S., Hannon G.J., Kay M.A. RNA interference in adult mice. Nature. 2002;418:38–39. doi: 10.1038/418038a. [DOI] [PubMed] [Google Scholar]
  52. McCaffrey A.P., Nakai H., Pandey K., Huang Z., Salazar F.H., Xu H., Wieland S.F., Marion P.L., Kay M.A. Inhibition of hepatitis B virus inmice by RNA interference. Nat Biotechnol. 2003;21:639–644. doi: 10.1038/nbt824. [DOI] [PubMed] [Google Scholar]
  53. McKnight K.L., Heinz B.A. RNA as a target for developing antivirals. Antivir Chem Chemother. 2003;14:61–73. doi: 10.1177/095632020301400201. [DOI] [PubMed] [Google Scholar]
  54. Meister G., Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431:343–349. doi: 10.1038/nature02873. [DOI] [PubMed] [Google Scholar]
  55. Michienzi A., Castonotto D., Lee N., Li S., Zaia J., Rossi J.J. RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci. 2003;1002:63–71. doi: 10.1196/annals.1281.008. [DOI] [PubMed] [Google Scholar]
  56. Mittal V. Improving the efficiency of RNA interference in mammals. Nat Rev Genet. 2004;5:355–365. doi: 10.1038/nrg1323. [DOI] [PubMed] [Google Scholar]
  57. Ngok F.K., Mitsuyasu R.T., Macpherson J.L., Boyd M.P., Symonds G.P., Amado R.G. Clinical gene therapy research utilizing ribozymes. Methods Mol Biol. 2004;252:581–598. doi: 10.1385/1-59259-746-7:581. [DOI] [PubMed] [Google Scholar]
  58. Novina C.D., Murray M.F., Dykxhoorn D.M., Beresford P.J., Riess J., Lee S.-K., Collman R.G., Lieberman J., Shankar P., Sharp P.A. siRNA-directed inhibition of HIV-1 infection. Nat Med. 2002;8:681–686. doi: 10.1038/nm725. [DOI] [PubMed] [Google Scholar]
  59. Ojwang J.O., Hampel A., Looney D.J., Wong-Staal F., Rappaport J. Inhibition of the human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci USA. 1992;89:10802–10806. doi: 10.1073/pnas.89.22.10802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Pan W.-H., Xin P., Morrey J.D., Clawson G.A. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol Ther. 2004;9:596–606. doi: 10.1016/j.ymthe.2003.12.013. [DOI] [PubMed] [Google Scholar]
  61. Peracchi A. Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol. 2004;14:47–64. doi: 10.1002/rmv.415. [DOI] [PubMed] [Google Scholar]
  62. Phipps K.M., Martinez A., Lu J., Heinz B.A., Zhao G. Small interfering RNA molecules as potential anti-human rhinovirus agents: in vitro potency, specificity and mechanism. Antiviral Res. 2004;61:49–55. doi: 10.1016/j.antiviral.2003.08.005. [DOI] [PubMed] [Google Scholar]
  63. Qin X.-F., An D.S., Chen I.S.Y., Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003;100:183–188. doi: 10.1073/pnas.232688199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Radhakrishnan S.K., Layden T.J., Gartel A.L. RNA interference as a new strategy against viral hepatitis. Virology. 2004;323:173–181. doi: 10.1016/j.virol.2004.02.021. [DOI] [PubMed] [Google Scholar]
  65. Randall G., Rice C.M. Interfering with hepatitis C virus RNA replication. Virus Res. 2004;102:19–25. doi: 10.1016/j.virusres.2004.01.011. [DOI] [PubMed] [Google Scholar]
  66. Randall G., Grakoui A., Rice C.M. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA. 2003;100:235–240. doi: 10.1073/pnas.0235524100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W.S., Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–330. doi: 10.1038/nbt936. [DOI] [PubMed] [Google Scholar]
  68. Ryther R.C.C., Flynt A.S., Phillips J.A., III, Patton J.G. siRNA therapeutics: big potential from small RNAs. Gene Ther. 2005;12:5–11. doi: 10.1038/sj.gt.3302356. [DOI] [PubMed] [Google Scholar]
  69. Saleh M.-C., Van Rij R.P., Andino R. RNA silencing in viral infections: insights from poliovirus. Virus Res. 2004;102:11–17. doi: 10.1016/j.virusres.2004.01.010. [DOI] [PubMed] [Google Scholar]
  70. Santoro S.W., Joyce G.F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA. 1997;94:4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Scacheri P.C., Rozenblatt-Rosen O., Caplen N.J., Wolfsberg T.G., Umayam L., Lee J.C., Hughes C.M., Shanmugam K.S., Bhattacharjee A., Meyerson M., Collins F.S. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA. 2004;101:1892–1897. doi: 10.1073/pnas.0308698100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schubert S., Kurreck J. Ribozyme-and deoxyribozyme-strategies for medical applications. Curr Drug Targets. 2004;5:667–681. doi: 10.2174/1389450043345092. [DOI] [PubMed] [Google Scholar]
  73. Schubert S., Gül D.C., Grunert H.-P., Zeichhardt H., Erdmann V.A., Kurreck J. RNA cleaving “10–23” DNAzymes with enhanced stability and activity. Nucleic Acids Res. 2003;31:5982–5992. doi: 10.1093/nar/gkg791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Schubert S., Fürste J.P., Werk D., Grunert H.-P., Zeichhardt H., Erdmann V.A., Kurreck J. Gaining target access for deoxyribozymes. J Mol Biol. 2004;339:355–363. doi: 10.1016/j.jmb.2004.03.064. [DOI] [PubMed] [Google Scholar]
  75. Schubert S., Grunert H.-P., Zeichhardt H., Werk D., Erdmann V.A., Kurreck J. Maintaining Inhibition: siRNA double expression vectors against coxsackieviral RNAs. J Mol Biol. 2005;346:457–465. doi: 10.1016/j.jmb.2004.11.074. [DOI] [PubMed] [Google Scholar]
  76. Schubert S., Grünweller A., Erdmann V.A., Kurreck J. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol. 2005;348:883–893. doi: 10.1016/j.jmb.2005.03.011. [DOI] [PubMed] [Google Scholar]
  77. Schwarz D.S., Hutvágner G., Du T., Xu Z., Aronin N., Zamore P.D. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208. doi: 10.1016/S0092-8674(03)00759-1. [DOI] [PubMed] [Google Scholar]
  78. Seksek O., Bolard J. Delivery agents for oligonucleotides. Methods Mol Biol. 2004;252:545–568. doi: 10.1385/1-59259-746-7:545. [DOI] [PubMed] [Google Scholar]
  79. Semizarov D., Frost L., Sarthy A., Kroeger P., Halbert D.N., Fesik S.W. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA. 2003;100:6347–6352. doi: 10.1073/pnas.1131959100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Silva J., Chang K., Hannon G.J., Rivas F.V. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene. 2004;23:8401–8409. doi: 10.1038/sj.onc.1208176. [DOI] [PubMed] [Google Scholar]
  81. Sioud M. Therapeutic siRNAs. Trends Pharmacol Sci. 2004;25:22–28. doi: 10.1016/j.tips.2003.11.006. [DOI] [PubMed] [Google Scholar]
  82. Sledz C.A., Holko M., deVeer M.J., Silverman R.H., Williams B.R. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5:834–839. doi: 10.1038/ncb1038. [DOI] [PubMed] [Google Scholar]
  83. Sohail M., Southern E.M. Selecting optimal antisense reagents. Adv Drug Deliv Rev. 2000;44:23–34. doi: 10.1016/S0169-409X(00)00081-8. [DOI] [PubMed] [Google Scholar]
  84. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Röhl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.-P. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–178. doi: 10.1038/nature03121. [DOI] [PubMed] [Google Scholar]
  85. Sullenger B.A., Gilboa E. Emerging clinical applications of RNA. Nature. 2002;418:252–258. doi: 10.1038/418252a. [DOI] [PubMed] [Google Scholar]
  86. Takahashi H., Hamazaki H., Habu Y., Hayashi M., Abe T., Miyano-Kurosaki N., Takaku H. A new modified DNA enzyme that targets influenza virus A mRNA inhibits viral infection in cultured cells. FEBS Lett. 2004;560:69–74. doi: 10.1016/S0014-5793(04)00073-0. [DOI] [PubMed] [Google Scholar]
  87. Thomas C.E., Ehrhardt A., Kay M.A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–358. doi: 10.1038/nrg1066. [DOI] [PubMed] [Google Scholar]
  88. Tompkins S.M., Lo C.-Y., Tumpey T.M., Epstein S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA. 2004;101:8682–8686. doi: 10.1073/pnas.0402630101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Uprichard S.L., Boyd B., Althage A., Chisari F.V. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA. 2005;102:773–778. doi: 10.1073/pnas.0409028102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Usman N., Blatt L.M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest. 2000;106:1197–1202. doi: 10.1172/JCI11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Wilson J.A., Jayasena S., Khvorova A., Sabatinos S., Rodrigue-Gervais I.G., Arya S., Sarangi F., Harris-Brandts M., Beaulieu S., Richardson C.D. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci USA. 2003;100:2783–2788. doi: 10.1073/pnas.252758799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Yuan J., Cheung P.K.M., Zhang H., Chau D., Yanagawa B., Cheung C., Luo H., Wang Y., Suarez A., McManus B.M., Yang D. A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Lab Invest. 2004;84:703–714. doi: 10.1038/labinvest.3700083. [DOI] [PubMed] [Google Scholar]
  93. Zamecnik P.C., Stephenson M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75:280–284. doi: 10.1073/pnas.75.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Zhang J., Yamada O., Sakamoto T., Yoshida H., Iwai T., Matsushita Y., Shimamura H., Araki H., Shimotohno K. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology. 2004;320:135–143. doi: 10.1016/j.virol.2003.11.023. [DOI] [PubMed] [Google Scholar]
  95. Zhang W., Yang H., Kong X., Mohapatra S., San Juan-Vergara H., Hellermann G., Behera S., Singam R., Lockey R.F., Mohapatra S.S. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med. 2005;11:56–62. doi: 10.1038/nm1174. [DOI] [PubMed] [Google Scholar]
  96. Zhang X., Xu Y., Ling H., Hattori T. Inhibition of infection of incoming HIV-1 virus by RNA cleaving DNA enzyme. FEBS Lett. 1999;458:151–156. doi: 10.1016/S0014-5793(99)01149-7. [DOI] [PubMed] [Google Scholar]
  97. Zhou C., Bahner I.C., Larson G.P., Zaia J.A., Rossi J.J., Kohn E.B. Inhibition of HIV-1 inhuman T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene. 1994;149:33–39. doi: 10.1016/0378-1119(94)90409-x. [DOI] [PubMed] [Google Scholar]

Articles from RNA Towards Medicine are provided here courtesy of Nature Publishing Group

RESOURCES