Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005;287:31–55. doi: 10.1007/3-540-26765-4_2

Coronavirus Transcription: A Perspective

S G Sawicki 2, D L Sawicki 2
Editor: Luis Enjuanes1
PMCID: PMC7121018  PMID: 15609508

Abstract

At the VIth International Symposium on Corona and Related Viruses held in Québec, Canada in 1994 we presented a new model for coronavirus transcription to explain how subgenome-length minus strands, which are used as templates for the synthesis of subgenomic mRNAs, might arise by a process involving discontinuous RNA synthesis. The old model explaining subgenomic mRNA synthesis, which was called leader-primed transcription, was based on erroneous evidence that only genome-length negative strands were present in replicative intermediates. To explain the discovery of subgenome-length minus strands, a related model, called the replicon model, was proposed: The subgenomic mRNAs would be produced initially by leader-primed transcription and then replicated into minus-strand templates that would in turn be transcribed into subgenomic mRNAs. We review the experimental evidence that led us to formulate a third model proposing that the discontinuous event in coronavirus RNA synthesis occurs during minus strand synthesis. With our model the genome is copied both continuously to produce minus-strand templates for genome RNA synthesis and discontinuously to produce minus-strand templates for subgenomic mRNA synthesis, and the subgenomic mRNAs do not function as templates for minus strand synthesis, only the genome does.

Keywords: Strand Synthesis, Sindbis Virus, Minus Strand, Mouse Hepatitis Virus, Equine Arteritis Virus

Contributor Information

Luis Enjuanes, Email: L.Enjuanes@cnb.uam.es.

S. G. Sawicki, Email: ssawicki@mco.edu

References

  1. An S., Maeda A., Makino S. Coronavirus transcription early in infection. J Virol. 1998;72:8517–8524. doi: 10.1128/jvi.72.11.8517-8524.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baric R.S., Stohlman S.A., Lai M.M.C. Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. J Virol. 1983;48:633–640. doi: 10.1128/jvi.48.3.633-640.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brayton P.R., Lai M.M.C., Patton C.D., Stohlman S. Characterization of two RNA polymerase activities induced by mouse hepatitis virus. J. Virol. 1982;42:847–853. doi: 10.1128/jvi.42.3.847-853.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brian D.A., Chang R.Y., Hofmann M.A., Sethna P.B. Role of subgenomic minusstrand RNA in coronavirus replication. Arch Virol Suppl. 1994;9:173–180. doi: 10.1007/978-3-7091-9326-6_17. [DOI] [PubMed] [Google Scholar]
  5. Brockway S.M., Clay C.T., Denison M.R. Characterization of the expression, intracellular localization and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol. 2003;77:10515–10527. doi: 10.1128/JVI.77.19.10515-10527.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997;142:629–633. [PubMed] [Google Scholar]
  7. David-Ferreira J.F., Manaker R.A. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. J Cell Biol. 1965;24:57–64. doi: 10.1083/jcb.24.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Den Boon J.A., Spaan W.J., Snijder E.J. Equine arteritis virus subgenomic RNA transcription: UV inactivation and translation inhibition studies. Virology. 1995;213:364–372. doi: 10.1006/viro.1995.0009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dobkin C., Mills D.R., Kramer F.R., Spiegelman S. RNA replication: required intermediates and the dissociation of template, product and the Qbeta replicase. Biochemistry. 1979;18:2038–2044. doi: 10.1021/bi00577a030. [DOI] [PubMed] [Google Scholar]
  10. Jacobs L., Spaan W.J., Horzinek M.C., van der Zeijst B.A. Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: evidence from UV transcription mapping. J Virol. 1981;39:401–406. doi: 10.1128/jvi.39.2.401-406.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Komissaarova N., Kashlev M. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J Biol Chem. 1997;272:15329–15338. doi: 10.1074/jbc.272.24.15329. [DOI] [PubMed] [Google Scholar]
  12. Komissaarova N., Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc Natl Acad Sci USA. 1997;94:1755–1760. doi: 10.1073/pnas.94.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuo L., Master P. The small envelope protein E is not esssential for mouse coronavirus replication. J Virol. 2003;77:4597–4608. doi: 10.1128/JVI.77.8.4597-4608.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai M.M.C., Patton C.D., Baric R.S., Stohlman S.A. Presence of leader sequences in the mRNA of mouse hepatitis virus. J Virol. 1983;46:1027–1033. doi: 10.1128/jvi.46.3.1027-1033.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lai M.M.C., Patton C.D., Stohlman S.A. Replication of mouse hepatitis virus: negative strand RNA and replicative form RNA are of genome length. J Virol. 1982;44:487–492. doi: 10.1128/jvi.44.2.487-492.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc Natl Acad Sci USA. 1984;81:3626–3630. doi: 10.1073/pnas.81.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lai M.M.C., Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100. doi: 10.1016/S0168-1702(96)01421-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M.M.C., Holmes K.V. Coronaviridae: The Viruses and Their Replication. In: Fields B.N., Knipe D.M., Howley P.M., Griffin D.E., editors. Field's Virology. 4th Edition. Philadelphia: Lippincott, Williams and Wilkins; 2001. [Google Scholar]
  19. Lemm J.A., Rumenapf T., Strauss E.G., Strauss J.H., Rice C.M. Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for temporal regulation of minus strand and plus strand RNA synthesis. EMBO J. 1994;13:2925–2934. doi: 10.1002/j.1460-2075.1994.tb06587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Makino S., Joo M., Makino J.K. A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol. 1991;65:6031–6041. doi: 10.1128/jvi.65.11.6031-6041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manaker R.A., Piczak C.V., Miller A.A., Stanton M.F. A hepatitis virus complicating studies with mouse leukemia. Natl Cancer Inst. 1961;27:29. [PubMed] [Google Scholar]
  22. Masters P.S., Koetzner C.A., Kerr C.A., Heo Y. Optimization of targeted RNA recombination and mapping of novel nucleocapsid gene mutations in the coronavirus mouse hepatitis virus. J Virol. 1994;68:328–337. doi: 10.1128/jvi.68.1.328-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pasternak A.O., van den Born E., Spaan W.J., Snijder E.J. The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol. 2003;77:1175–1183. doi: 10.1128/JVI.77.2.1175-1183.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sawicki D.L., Sawicki S.G. Role of the nonstructural polyproteins in alphavirus RNA synthesis. Adv Exp Med Biol. 1998;440:187–198. doi: 10.1007/978-1-4615-5331-1_23. [DOI] [PubMed] [Google Scholar]
  25. Sawicki S.G., Sawicki D.L. Coronavirus minus strand synthesis and effect of cycloheximide on coronavirus RNA synthesis. J Virol. 1986;57:328–334. doi: 10.1128/jvi.57.1.328-334.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sawicki S.G., Sawicki D.L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol. 1990;64:1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sawicki S.G., Sawicki D.L. Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol. 1995;380:499–506. doi: 10.1007/978-1-4615-1899-0_79. [DOI] [PubMed] [Google Scholar]
  28. Sawicki D.L., Wang T., Sawicki S.G. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol. 2001;82:385–396. doi: 10.1099/0022-1317-82-2-385. [DOI] [PubMed] [Google Scholar]
  29. Sethna P.B., Hofmann M.A., Brian D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 1991;65:320–325. doi: 10.1128/jvi.65.1.320-325.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sethna P.B., Hung S.L., Brian D.A. Coronavirus subgenomic minus strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci USA. 1989;86:5626–5630. doi: 10.1073/pnas.86.14.5626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shaevitz J.W., Abbondanzieri E.A., Landick R., Block S.M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature. 2003;426:684–687. doi: 10.1038/nature02191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shirako Y., Strauss J.H. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus strand synthesis. J Virol. 1994;68:1874–1885. doi: 10.1128/jvi.68.3.1874-1885.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Siddell S.G. The Coronaviridae. New York: Plenum Press; 1995. [Google Scholar]
  34. Simmons D.T., Strauss J.H. Replication of Sindbis virus II. Multiple forms of double-stranded RNA isolated from infected cells. J Mol Biol. 1972;71:615–631. doi: 10.1016/s0022-2836(72)80027-5. [DOI] [PubMed] [Google Scholar]
  35. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziehbuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331:991–1004. doi: 10.1016/S0022-2836(03)00865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Snijder E.J., Meulenberg J.J. The molecular biology of arteriviruses. J Gen Virol. 1998;79:961–979. doi: 10.1099/0022-1317-79-5-961. [DOI] [PubMed] [Google Scholar]
  37. Spaan W.J., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B.A., Siddell S.G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2:1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stern D.F., Sefton B.M. Synthesis of coronavirus mRNAs: kinetics of inactivation of infectious bronchititis virus RNA synthesis by UV light. J Virol. 1982;42:755–759. doi: 10.1128/jvi.42.2.755-759.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sturman L.S., Takemoto K.K. Enhanced growth of a murine coronavirus in transformed mouse cells. Infect Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thiel V., Herold J., Schelle B., Siddell S. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol. 2001;82:1273–1281. doi: 10.1099/0022-1317-82-6-1273. [DOI] [PubMed] [Google Scholar]
  41. Thiel V., Herold J., Schelle B., Siddell S. Virus replicase gene products suffice for coronavirus discontinuous transcription. J Virol. 2001;75:6676–6681. doi: 10.1128/JVI.75.14.6676-6681.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tijms M.A., Snijder E.J. Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100. J Gen Virol. 2003;84:2317–2322. doi: 10.1099/vir.0.19297-0. [DOI] [PubMed] [Google Scholar]
  43. van der Most R.G., deGroot R.J., Spaan W.J. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol. 1994;68:3656–3666. doi: 10.1128/jvi.68.6.3656-3666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Dinten L.C., van Tol H., Gorbalenya A.E., Snijder E.J. The predicted metal binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication and virion biogenesis. J Virol. 2000;74:5213–5223. doi: 10.1128/JVI.74.11.5213-5223.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Marle G., Dobbe J.C., Gultyaev A.P., Luytjes W., Spaan W.J., Snijder E.J. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA. 1999;96:12056–12061. doi: 10.1073/pnas.96.21.12056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Marle G., Luytjes W., van der Most R.G., van der Straaten T., Spaan W.J. Regulation of coronavirus mRNA transcription. J Virol. 1995;69:7851–7856. doi: 10.1128/jvi.69.12.7851-7856.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van Marle G., van Dinten L.C., Spaan W.J., Lyuytjes W., Snijder E.J. Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. J Virol. 1999;73:5274–5281. doi: 10.1128/jvi.73.7.5274-5281.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wang T., Sawicki S.G. Mouse hepatitis virus minus strand templates are unstable and turnover during viral replication. Adv Exp Med Biol. 2001;494:491–497. doi: 10.1007/978-1-4615-1325-4_71. [DOI] [PubMed] [Google Scholar]
  49. Wang Y.F., Sawicki S.G., Sawicki D.L. Alphavirus nsP3 functions to form replication complexes transcribing negative strand RNA. J Virol. 1994;68:6466–6475. doi: 10.1128/jvi.68.10.6466-6475.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Coronavirus Replication and Reverse Genetics are provided here courtesy of Nature Publishing Group

RESOURCES