Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005:3–15. doi: 10.1007/3-211-29981-5_2

Virus perpetuation in populations: biological variables that determine persistence or eradication

N Nathanson 3
Editors: C J Peters1, Charles H Calisher2
PMCID: PMC7121194  PMID: 16355865

Summary

In this review, I use the term “perpetuation” for persistence of a virus in a population, since this is a different phenomenon from persistence of a virus in an infected host. Important variables that influence perpetuation differ in small (<1,000 individuals) and large (>10,000) populations: in small populations, two important variables are persistence in individuals, and turnover of the population, while in large populations important variables are transmissibility, generation time, and seasonality. In small populations, viruses such as poliovirus that cause acute infections cannot readily be perpetuated, in contrast to viruses such as hepatitis B virus, that cause persistent infections. However, small animal populations can turnover significantly each year, permitting the perpetuation of some viruses that cause acute infections. Large populations of humans are necessary for the perpetuation of acute viruses; for instance, measles required a population of 500,000 for perpetuation in the pre-measles vaccine era. Furthermore, if an acute virus, such as poliovirus, exhibits marked seasonality in large populations, then it may disappear during the seasonal trough, even in the presence of a large number of susceptible persons. Eradication is the converse of perpetuation and can be used as a definitive approach to the control of a viral disease, as in the instance of smallpox. Therefore, the requirements for perpetuation have significant implications for practical public health goals.

Keywords: Measle Vaccine, Measle Case, Lassa Fever, Crimean Congo Hemorrhagic Fever, Paralytic Poliomyelitis

References

  • 1.Ahmed R., Chen I.S.Y., editors. Persistent viral infections. Chichester: Wiley; 1999. [Google Scholar]
  • 2.Bartlett M.S. The critical community size for measles in the United States. J Royal Stat Soc Series A. 1960;123:37–44. [Google Scholar]
  • 3.Black F. Infectious diseases in primitive societies. Science. 1975;187:515–518. doi: 10.1126/science.163483. [DOI] [PubMed] [Google Scholar]
  • 4.Centers for Disease Control (1961–1974) Annual poliomyelitis summaries for the years 1960–1973. Atlanta, Georgia
  • 5.Centers for Disease Control (1977) Poliomyelitis summary, 1974–1976. Atlanta, Georgia
  • 6.Centers for Disease Control Morb Mortal Wkly Rep. 1982;30:12–17. [Google Scholar]
  • 7.Enright J.R. The epidemiology of paralytic poliomyelitis in Hawaii. Hawaii Med J. 1954;13:350–354. [PubMed] [Google Scholar]
  • 8.Esposito J.J., Fenner F. Poxviruses. In: Knipe D.M., Howley P.M., editors. Fields virology. 4th edn. Philadelphia: Lippincott Williams and Wilkins; 2001. [Google Scholar]
  • 9.Gao F., Bailes E., Robertson D.L., Chem Y., Roberston D.L., Michael S.F., Cummins L.B., Arthur L.O., Peeters M., Shaw G.M., Sharp P.M., Hahn B.J. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–441. doi: 10.1038/17130. [DOI] [PubMed] [Google Scholar]
  • 10.Gaschen B., Taylor J., Yusim K., Foley B., Gao F., Lang D., Novitscky V., Haynes B., Hahn B.H., Bhattacharya T., Korber B. Diversity consideration in HIV-1 vaccine selection. Science. 2002;296:2354–2360. doi: 10.1126/science.1070441. [DOI] [PubMed] [Google Scholar]
  • 11.Hahn B.H., Shaw G.M., De Cock K.M., Sharp P.M. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287:607–614. doi: 10.1126/science.287.5453.607. [DOI] [PubMed] [Google Scholar]
  • 12.Hall W.J., Nathanson N., Langmuir A.D. The age distribution of poliomyelitis in the United States in 1955. Am J Hyg. 1957;66:214–234. doi: 10.1093/oxfordjournals.aje.a119896. [DOI] [PubMed] [Google Scholar]
  • 13.Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B.H., Wolinsky S., Bhattacharya T. Timing the ancestor of the HIV-1 pandemic strains. Sci. 2000;288:1789–1796. doi: 10.1126/science.288.5472.1789. [DOI] [PubMed] [Google Scholar]
  • 14.Monath T.P. Lassa fever: review of epidemiology and epizootology. Bull World Health Organ. 1975;52:577–591. [PMC free article] [PubMed] [Google Scholar]
  • 15.Nathanson N. Epidemiological aspects of poliomyelitis eradication. Rev Infectious Dis 6[Suppl] 1984;2:308–312. doi: 10.1093/clinids/6.supplement_2.s308. [DOI] [PubMed] [Google Scholar]
  • 16.Nathanson N., Martin J.P. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am J Epidemiol. 1979;110:672–692. doi: 10.1093/oxfordjournals.aje.a112848. [DOI] [PubMed] [Google Scholar]
  • 17.Neustadt R.E., Fineberg H.V. The swine flu affair. Washington DC: US Department of Health, Education, and Welfare, US Superintendent of Documents; 1978. [Google Scholar]
  • 18.Nsilambi N., De Cock K.M., Forthal D.N., Francis H., Ryder R.W., Malebe I., Getchell J., Laga M., Piot P., McCormick J.B. The prevalence of infection with human immunodeficiency virus over a 10-year period in rural Zaire. New England J Med. 1988;318:276–279. doi: 10.1056/NEJM198802043180503. [DOI] [PubMed] [Google Scholar]
  • 19.Paffenbarger R.S., Bodian D. Poliomyelitis immune status in ecologically diverse populations, in relation to virus spread, clinical incidence, and virus disappearance. Am J Hyg. 1961;74:311–325. doi: 10.1093/oxfordjournals.aje.a120222. [DOI] [PubMed] [Google Scholar]
  • 20.Peters C.J. California encephalitis, hantavirus pulmonary syndrome, and bunyavirid hemorrhagic fevers. In: Mandell G.L., Bennett J.E., Dolin R., editors. Principles and practice of infectious diseases. 5th edn. Philadelphia: Churchill Livingstone; 2000. [Google Scholar]
  • 21.Robinson G.W., Nathanson N., Hodous J. Sero-epidemiological study of rat virus infection in a closed laboratory colony. Am J Epidemiol. 1971;94:91–100. doi: 10.1093/oxfordjournals.aje.a121299. [DOI] [PubMed] [Google Scholar]
  • 22.Sanchez A., Khan A.S., Zaki S.R., Nabel G.J., Ksiazek T.G., Peters C.J. Filoviridae: Marburg and Ebola viruses. In: Knipe D.M., Howley P.M., editors. Fields virology. 4th edn. Philadelphia: Lippincott Williams and Wilkins; 2001. [Google Scholar]
  • 23.Serfling R.E., Sherman I.L. Poliomyelitis distribution in the United States. Public Health Rep. 1953;68:453–466. [PMC free article] [PubMed] [Google Scholar]
  • 24.Silverstein A.M. Pure politics and impure science: the swine flu affair. Baltimore, Maryland: The Johns Hopkins University Press; 1981. [Google Scholar]
  • 25.Skinhoj P. Hepatitis and hepatitis B-antigen in Greenland. II. Occurrence and interrelation of hepatitis B associated surface, core, and “e” antigen-antibody systems in a highly endemic area. Am J Epidemiol. 1977;105:99–106. doi: 10.1093/oxfordjournals.aje.a112371. [DOI] [PubMed] [Google Scholar]
  • 26.Stevens J.G., Todaro G.J., Fox G.F., editors. Persistent viruses. New York: Academic Press; 1978. [Google Scholar]
  • 27.The Chinese SARS molecular epidemiology consortium Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Sci. 2004;303:1666–1669. doi: 10.1126/science.1092002. [DOI] [PubMed] [Google Scholar]
  • 28.Timothee R.A., Morris L., Feliberti M., et al. Epidemic of poliomyelitis in Puerto Rico, 1960. Public Health Rep. 1963;78:65–76. [PMC free article] [PubMed] [Google Scholar]
  • 29.Wright P.F., Webster R.G. Orthomyxoviruses. In: Knipe D.M., Howley P.M., editors. Fields virology. 4th edn. Philadelphia: Lippincott Williams and Wilkins; 2001. pp. 1533–1579. [Google Scholar]
  • 30.Yorke J.A., Nathanson N., Pianigiani G., Martin J. Seasonality and the requirements for perpetuation and eradication of viruses in populations. Am J Epidemiol. 1979;109:103–123. doi: 10.1093/oxfordjournals.aje.a112666. [DOI] [PubMed] [Google Scholar]
  • 31.Yorke J.A., London W.P. Recurrent outbreaks of measles, chickenpox, and mumps. II. Systematic differences in contact rates and stochastic effects. Am J Epidemiol. 1973;98:469–482. doi: 10.1093/oxfordjournals.aje.a121576. [DOI] [PubMed] [Google Scholar]

Articles from Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence are provided here courtesy of Nature Publishing Group

RESOURCES